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Introduction

For drug-resistant focal epilepsy, neurosurgical intervention to resect the epileptogenic zone (EZ) can be the only curative
treatment. One aspect of the preparatory localization of the Seizure Onset Zone (SOZ) is to analyze stereo-EEG (sEEG)
signals, which are intracranial measures at electrodes (typically between 8 and 12, each with 10 to 12 contact points). We
develop a novel Seizure Onset Zone detection model based on a Transformer[1] encoder, as well as a new spatial contrastive
pre-training framework based on channel-specific learned representations. The model processes heterogeneous sEEG records
from different patients, using both ictal and interictal data. The supervised contrastive strategy minimizes representational
similarity between SOZ vs non-SOZ channels.

sEEG electrodes and recordings. Figure from [2]

We employ a public sEEG dataset from the Hospital of the University of Pennsylvania (HUP)[3] alongside a private dataset
from Lyon University Hospital (CHUL), which we processed to ensure compliance with the Brain Imaging Data Structure
(BIDS) standard[4].

Time-frequency features

We use a 5-level Daubechies-4 (Db4) Wavelet Packet Transform (WPT)[5] to analyze sEEG signals. This transform provides
good time-frequency localization, creating features sensitive to both transient events like spikes and specific narrowband
oscillations like ripples[6, 7]. The resulting sub-band decomposition helps distinguish these pathological patterns from
background activity for subsequent modeling.
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Wavelet Packet Transform of a 35 second clip for a given channel.
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Attention maps as directed connectivity graphs

We interpret the Transformer’s attention maps A = softmax
(

QK ⊤
√

dK

)
as directed graphs, analogous to functional connectivity

networks used in neuroscience[8, 9, 10, 11]. Analyzing these graphs across layers and heads reveals learned dependencies
between input channels and links attention mechanisms with traditional brain signal analysis.

Attention map seen as a directed graph. The center graph shows the upper right triangle of the attention matrix, while the rightmost graph shows
the lower triangle. Attention flows from queries (line indices) to keys (column indices). Arrows not shown for clarity.

Contrastive Pre-training

We pre-train an encoder using Focal Class-Balanced Supervised Contrastive Loss[12, 13, 14] to learn channel embeddings
(z i) that group channels by SOZ label and handle class imbalance within patient segments.
The loss aggregates over anchor channels i :

LF-CB-SC ∝
∑

i :|P(i)|>0
wCB

i · −1
|P(i)|

∑

p∈P(i)

FocalModulation︷ ︸︸ ︷
(1 − pip)γ log(pip)

︸ ︷︷ ︸
Avg. Focal SupCon for anchor i

with:

▶ Class Balance Weight (using effective N):
wCB

i = 1 − β

1 − βNyi + ϵ
▶ Contrastive Probability (for positive pair p):

pip = exp(sim(z i , zp)/τ )∑
k∈A(i) exp(sim(z i , zk)/τ )

Hyperparameters: τ (temperature), β (class balance, e.g. 0.99), γ (focal focus). This loss pushes same-class embeddings
together and different-class embeddings apart, weighting rare classes (β) and hard positive pairs (γ) more heavily.

Fine-tuning for SOZ Detection

Fine-tuning adapts the model to predict SOZ probability (yn = 1) per channel. We continue to mitigate data imbalance,
employing similar strategies as in pre-training through the use of Focal Class-Balanced BCE Loss.
The loss aggregates over individual channels n:

LF-CB-BCE ∝
∑

n
wCB

n︸︷︷︸
Balances channel class

(via β, Nyn)

· (1 − pn
t )γ

︸ ︷︷ ︸
Focuses on hard

predictions (via γ)

·BCE(xn, yn)︸ ︷︷ ︸
Standard BinaryCross Entropy

where:

▶ xn is the logit output for channel n; yn is the true label.
▶ pn

t is the predicted probability (σ(xn) or 1 − σ(xn)) for the true class yn.
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