
Research Internship Report

Machine Learning for Seizure Onset
Zone Detection from sEEG-data

Zacharie Rodière

May 2025

Physics Laboratory, ENS de Lyon

Abstract

For drug-resistant focal epilepsy, neurosurgical resection of the epileptogenic zone
(EZ) offers a curative treatment. Accurate localization of the Seizure Onset Zone
(SOZ) via stereo-EEG (sEEG) analysis—intracranial recordings from multi-contact
electrodes—is crucial for surgical planning. We develop a novel SOZ detection
model using a Transformer encoder with spatial attention, complemented by a
new spatial contrastive pre-training framework designed to learn channel-specific
representations. This framework, applied to heterogeneous sEEG records (ictal
and interictal) from diverse patients, encourages distinct representations for SOZ
versus non-SOZ channels. Subsequent fine-tuning for classification employs a
channel-wise focal class-balanced Binary Cross-Entropy loss to effectively ad-
dress the inherent class imbalance between the few SOZ channels and numerous
non-SOZ channels.

1

Acknowledgments

I sincerely thank my advisors, Pierre Borgnat and Paulo Gonçalves, for the excep-
tional opportunity to immersemyself in the research environment at ENS de Lyon.
Mygratitude also extends to the vibrantOckham teamPhDstudents–Arthur, Çan,
Anne, Maël, and Edgar – andmy fellow intern, Gabriel Sanchez. These six months
were filledwith learning, camaraderie, and stimulating challenges. The dedication,
intellectual curiosity, and passion for research I observedwithin the teamhave left
a lasting impression on me, and I am deeply thankful for that experience.

마지막으로 사랑하는 가희에게, 이 보고서를 완성하는 동안 인내심과 격려를 보내주
셔서감사합니다.이일이얼마나중요한일인지네가이해해주고곁에있어줘서정말
큰힘이되었어.

2

Contents
1 Introduction 4

2 Internship Organization and Context 6

3 Working with sEEG data 8
3.1 Understanding the sEEG modality . 8
3.2 Data formats . 9
3.3 Overview of the iEEG-BIDS CHUL dataset 11
3.4 Time-Frequency Features as Effective Inputs 13
3.5 PyTorch implementation . 15

4 First approach: Modeling Anomalies on a self-supervised DCGRUmodel 17
4.1 Diffusion convolution operation . 18

4.1.1 Undirected graphs . 18
4.1.2 Directed graphs . 20

4.2 Connectivity Graphs . 21
4.2.1 Distance-Based Graph . 21
4.2.2 Connectivity-Based Graph (Phase Locking Value) 22

4.3 DCGRU cell . 24
4.4 Encoder-Decoder Architecture for Spatio-Temporal Prediction . . . 25

5 Transformer-based SOZ Detection with Contrastive Pre-training 27
5.1 Model Architecture: A Transformer for Channel-wise SOZ-Detection 27
5.2 Contrastive Pre-training with a Focal Class-Balanced Loss 30
5.3 Fine-tuning for SOZ Channel Classification 34
5.4 Preliminary Results and Discussion 41

6 Conclusion and Future Work 43

References 44

A Python Implementation Details 47
A.1 Data Processing and Feature Extraction 47

A.1.1 Db-4 Wavelet Packet Transform PyTorch implementation . 47
A.1.2 HUP+CHUL Dataset interface 48

A.2 Core Model and Training Framework 52
A.2.1 Model architecture . 52
A.2.2 Loss functions . 55
A.2.3 Pre-training script . 61
A.2.4 Fine-tuning script . 63

A.3 Visualization . 67

3

1 Introduction

Epilepsy is a significant neurological disorder affecting millions globally. For pa-
tients with drug-resistant epilepsy, surgical resection of the Seizure Onset Zone
(SOZ) offers a potential cure, but its success hinges on the accurate localization of
this zone. Stereo-electroencephalography (sEEG) provides high spatio-temporal
resolution intracranial recordings crucial for SOZ identification. However, the vi-
sual analysis of sEEG signals is a complex, time-consuming task, susceptible to
inter-observer variability, underscoring the need for automated, data-drivenmeth-
ods.

This report details a 6-month research internship at ENS de Lyon. The primary ob-
jective was to develop and evaluate machine learning techniques for robust SOZ
detection from sEEG data. Initial investigations explored anomaly detection using
learned representations from a Diffusion Convolutional Gated Recurrent Unit (DC-
GRU), amodel designed to exploit graph structures computed from sEEG channel
connectivity measures. While this approach provided valuable insights, it was ul-
timately not pursued to completion.

The core contribution of this internship, and the main focus of this report, is the
development of a novel approach utilizing a transformer encoder architecture
applied to sequentialized sEEG channels. This model leverages a balanced con-
trastive pre-training strategy to learn effective representations from the sEEG sig-
nals, followed by a balanced classification fine-tuning stage for the final SOZ de-
tection task. Preliminary results from this approach are promising and were pre-
sented at the Graph Signal Processing Workshop (MILA, Montréal, 2025).

4

Figure 1: sEEG electrode setup and example recordings. Figure from [1]

5

2 Internship Organization and Context

The internship was formally conducted under a convention de stage with ENS de
Lyon from Nov. 5 2024 to May 17 2025. My primary advisor was Pierre Borgnat, a
Senior Research Director at CNRS (Centre National de la Recherche Scientifique)
within the SIgnaux, SYstèmes et PHysique (SISYPHE) teamof the Physics Labora-
tory. I was co-advised byPauloGonçalves from Inria (Institut National deRecherche
en Informatique et Automatique).

Computing resources for large-scale dataset management and model training
were provided by ENS de Lyon, with technical support fromEmmanuel Quemener.
The research environment at the Physics Laboratory facilitated rich scientific ex-
change. Interactions includedparticipation in PhDdefenses,weeklyMachine Learn-
ing and Signal Processing seminars, Monday morning mathematical meetings,
selected ENS classes, and valuable informal discussions with PhD students spe-
cializing in machine learning. Regular progress meetings, typically held weekly,
were conducted with my advisors, supplemented by email updates on significant
developments.

This internship contributes to a larger multiyear project funded by the French Na-
tional ResearchAgency (ANR,AgenceNationale de la Recherche), project SEIZURE.
This ANR project involves collaboration with researchers from the Lyon Neuro-
science Research Center (CRNL, Centre de Recherche en Neurosciences de Lyon),
particularly Julien Jung, who was instrumental in bringing this project to fruition
through his essential contributions to data acquisition. The overarching goal of
this collaborative effort is to develop a multi-modal model for improved SOZ de-
tection, aiming to radically enhance surgical outcomes for epilepsy patients.Within
this framework, the specific focus of my work was the development of an effec-
tive model for the sEEG modality. ANR project meetings were held three times a
month in a CRNL library in the eastern Lyon hospitals.

The internship lead to the submission of an extended abstract at the Graph Signal
Processing Workshop (GSP Workshop), held in MILA, Montréal this year, where I
was able to present my work in the form of a poster.

6

https://perso.ens-lyon.fr/pierre.borgnat/
https://perso.ens-lyon.fr/paulo.goncalves/
https://www.researchgate.net/profile/Emmanuel-Quemener
https://www.crnl.fr/en/user/243

Figure 2: Poster presentation at the GSP Workshop in Montréal. Thanks to Pierre
Borgnat for the picture!

7

3 Working with sEEG data

3.1 Understanding the sEEG modality

Stereotactic electroencephalography (sEEG) is an invasive neurophysiologicalmon-
itoring technique that involves implanting multiple thin electrodes directly into
deep brain structures. Unlike scalp EEG, which measures electrical activity from
the surface of the brain, sEEG provides highly localized and precise recordings of
neuronal activity from within the brain parenchyma. This allows clinicians to pin-
point the exact origin and spread of epileptic seizures, a critical step in surgical
planning for patients with drug-resistant epilepsy. The three-dimensional place-
ment of electrodes, guided by pre-operative MRI and CT scans, enables the map-
ping of complex seizure networks thatmight bemissed by less invasivemethods,
offering a detailed understanding of the seizure onset zone (SOZ)which is the area
of the brain where seizures originate.

Detecting the SOZ using sEEG relies on analyzing the unique electrophysiolog-
ical signatures of seizure activity. Traditional analysis techniques often involve
visual inspection of raw sEEG traces by experienced epileptologists, looking for
characteristic patterns such as low-voltage fast activity, rhythmic spiking, or high-
frequency oscillations that precede clinical seizure onset. Beyond visual assess-
ment, quantitative methods are employed to enhance SOZ localization. For in-
stance, spectral analysis can identify changes in specific frequency bands (e.g.,
increased gamma or ripple activity) associated with seizure initiation. Connec-
tivity analysis, using metrics like coherence or Granger causality, helps to map
the propagation of seizure activity by identifying brain regions that become syn-
chronously active or drive activity in other areas. Furthermore, source localization
techniques attempt to infer the precise spatial origin of electrical activity from the
sEEG signals, providing a more refined anatomical localization of the SOZ. These
combined approaches help to triangulate the SOZ, guiding neurosurgeons in re-
secting or ablating the epileptogenic tissue while sparing eloquent brain regions.

8

Figure 3: Pediatric sEEG implantation with a ROSA surgical robot. Figure from [2]

The development of stereo-electroencephalography (SEEG) as a precise method
for exploring deep brain activity, particularly in epilepsy, is inextricably linked to the
pioneeringwork of French neurosurgeonJeanTalairach andneurologist/neurophysiologist
Jean Bancaud in Paris, primarily from the 1950s through the 1970s[3]. Talairach
developed the stereotactic methodology and the proportional grid system (the
basis of the Talairach Atlas) that allowed for the precise and reproducible three-
dimensional targeting and implantation of electrodes deep within the brain. Ban-
caud then championed the clinical application of this technique, meticulously cor-
relating the intracerebral electrical recordings with clinical seizure semiology and
anatomical localization to define the epileptogenic zone. Their collaborative ap-
proach at Sainte-Anne Hospital revolutionized the presurgical evaluation of pa-
tients with drug-resistant focal epilepsy, moving beyond surface EEG limitations
to directly investigate the origin and spread of seizures within complex brain net-
works, thereby resulting in more effective surgical interventions.

3.2 Data formats

A variety of recording formats exist for stereo-EEG (sEEG), with the most promi-
nent detailed in the subsequent table. The sEEG data accessed from Lyon Uni-
versity Hospital (CHUL) was originally in Micromed (.trc) format, supplemented
by Brainstorm[4] exports containing additional metadata. SOZ information was
provided in an Excel spreadsheet, before being included in the Brain Imaging Data
Structure-compliant dataset. All data was subsequently reorganized according to
the iEEG-BIDS standard [5] and converted to the BIDS-compatible EDF format.
This semi-manual conversion, involving both automated and manual steps, re-
quired approximately one week to complete. The primary model, as described

9

in the DCGRU section, was first implemented using Micromed data, necessitat-
ing the creation of specific PyTorch Datasets to accommodate its original or-
ganizational scheme. A subsequent and significant effort involved transitioning
to a more standardized dataset. This refined dataset is intended to serve as a
reusable asset for future laboratory members, including interns and PhD candi-
dates, with the aspiration that its eventual enlargement and publication will bene-
fit the broader research community. BIDS compliance was verified using the BIDS
validator. An other open-access dataset from the Hospital of the University of
Pennsylvania (HUP)[6] was used to complement our French dataset.

10

https://github.com/bids-standard/bids-validator
https://github.com/bids-standard/bids-validator

Format Name File Ext(s). Structure Data Res. Max Ch. & Rate Metadata
Handling

Key Specificities

Micromed (.trc) .trc Proprietary, single
binary file.

Typically 16-bit. Dependent on
hardware (e.g., up to
256 ch, 16 kHz).

Basic channel
labels. Limited
std. metadata for
electrode coords.

Widely used in
clinical settings
with Micromed
systems.
Conversion often
needed for
advanced
analysis.

Brainvision Core .vhdr, .vmrk,
.eeg

Three separate files:
text header, text
marker, binary data.

16-bit or 32-bit
float.

High; up to 256+ ch,
up to 100 kHz (hw
dep.).

Flexible; basic
info in header.
Often
supplemented for
detailed coords.

BIDS compatible.
Multi-file for rich
event/metadata.
32-bit float
preserves fidelity.

European Data
Format (EDF/EDF+)

.edf, .edf+ Single binary file, text
header.

16-bit signed int. Up to 256 ch
(pract.). Rate varies
per ch.

EDF+ allows
annotations for
basic
events/metadata.
Electrode locs not
std.

Open standard.
Simple, widely
supported. 16-bit
res. can limit.
EDF+ crucial for
events.

Natus Nicolet .e, .eeg Proprietary binary
format.

Typ. 16-bit or
32-bit.

Dependent on hw
(e.g., up to 256 ch, 2
kHz+).

Stores basic
channel info.
Detailed sEEG
metadata often
separate.

Common in
clinics with
Natus/Nicolet.
Data often needs
conversion for
research.

Blackrock
Microsystems

.nsx, .nev Two files: .nsx
(continuous), .nev
(spike/event).

16-bit int. Very high; hundreds
of ch, up to 30 kS/s
per ch.

Basic header.
Detailed
metadata
(electrode maps)
via software.

High-density.
Optimized for
high-ch, high-rate
research. Dual-file
separates data.

Neurodata Without
Borders (NWB)

.nwb Single HDF5-based
binary file.

32-bit or 64-bit
float.

Virtually unlimited;
for very large
datasets.

Comprehensive
standard.
Dedicated
structures for
electrode groups,
localizations
(x,y,z), regions.

Future of
neurophys.
Modern, open-std
for FAIR data.
Stores raw,
processed,
extensive
metadata. Ideal
for complex
sEEG.

Table 1: Comparison of Different Data Formats for Stereo-EEGRecordings

3.3 Overview of the iEEG-BIDS CHUL dataset

TheCHULdataset adheres to iEEG-BIDS[5], a clear hierarchical structure designed
for standardized neuroimaging data organization and sharing. At the dataset root
level, essential descriptive files are present, including dataset_description.json
(providing global metadata), participants.tsv and participants.json (detail-
ing subject-level information), and dataset-wide metadata like channels.json or

11

events.json, applicable to all subjects and sessions. Data for each individual par-
ticipant is then segregated into uniquely labeled directories, such as sub-CHUL01,
sub-CHUL02, and soon.Within eachof these participant directories (e.g., sub-CHUL01),
data is further organized by imaging modality. In this specific case, all data falls
under the ieeg subdirectory, indicating intracranial EEG recordings. Inside the
ieeg directory, individual recording runs are distinguished by standardized file-
names incorporating key-value pairs like sub-CHUL01_task-ictal_run-01_ieeg.edf.
These filenames clearly specify the subject, task (e.g., ictal, interictal), and run
number. Accompanying each primary iEEG data file (e.g., .edf) are associated
metadata files, such as _channels.tsv (describing electrode properties), _events.tsv
(annotating experimental events), and _ieeg.json (a "sidecar" JSON file contain-
ing acquisition parameters specific to that recording). Additionally, each subject
directory contains a _scans.tsv file, which lists all acquisition files for that par-
ticipant and can link to their specific metadata. This consistent, multi-level orga-
nization ensures that data and its associated metadata are logically grouped and
easily discoverable, facilitating both manual inspection and automated process-
ing pipelines.
The reference manual for iEEG-BIDS can be found here.

12

https://bids-specification.readthedocs.io/en/stable/modality-specific-files/intracranial-electroencephalography.html

/
channels.json

dataset_description.json
events.json

participants.json
participants.tsv

README
sub-CHUL01/

sub-CHUL01_scans.tsv
ieeg/

sub-CHUL01_task-ictal_run-01_channels.tsv
sub-CHUL01_task-ictal_run-01_ieeg.edf
sub-CHUL01_task-ictal_run-01_ieeg.json

sub-CHUL01_task-ictal_run-02_channels.tsv
sub-CHUL01_task-ictal_run-02_events.tsv
sub-CHUL01_task-ictal_run-02_ieeg.edf

...

sub-CHUL02/
ieeg/

sub-CHUL02_task-ictal_run-01_channels.tsv
...

sub-CHUL02_scans.tsv
...

Figure 4: Hierarchical Structure of the CHUL iEEG-BIDS Dataset

3.4 Time-Frequency Features as Effective Inputs

We chose to use the Daubechies-4 (Db4) Wavelet Packet Transform (WPT)[7] as
time-frequency features for processing sEEG signals from each channel, employ-
ing 5 levels of decomposition. This approach offers a highly effective method-
ology for analyzing seizure-related activity due to its inherent ability to generate
localized time-frequency representations, which are indispensable for identifying
key epileptiform biomarkers such as spikes, ripples[8], and High-Frequency Os-
cillations (HFOs)[9]. These biomarkers are often transient and spectrally overlap-
ping phenomena, and their precise characterization in both time and frequency is
paramount for understanding the underlying neural dynamics. TheWPT achieves
this by providing a detailed tiling of the time-frequency plane, allowing for the pre-
cise determination of when a specific frequency component occurs—a critical ca-

13

pability for analyzing such short-lived events.

The Daubechies-4 wavelet itself contributes specific advantages to this analysis.
Its compact support, meaning its short duration in the time domain, is particularly
well-suited for capturing the sharp, transient nature of epileptic spikes, enabling
excellent temporal resolution by closely matching their morphology. Simultane-
ously, the Db4 wavelet’s regularity, or smoothness, aids in distinguishing these
pathological activities from the more regular background brain rhythms, effec-
tively suppressing smoother, non-epileptic components and thereby enhancing
the prominence of abnormal signals. The implicit orthogonality of Daubechies
wavelets further ensures that the extracted wavelet coefficients represent dis-
tinct, non-redundant pieces of information, which benefits subsequent feature ex-
traction and modeling.

Beyond the properties of the Db4 wavelet, the Wavelet Packet Transform struc-
ture significantly enhances spectral resolution, especially for HFOs and ripples.
Unlike the standard Discrete Wavelet Transform, the WPT decomposes both ap-
proximation and detail coefficients at each level, resulting in a more uniform and
finer-grained partitioning of the frequency spectrum. With 5 levels of decomposi-
tion, the spectrum is divided into 32 sub-bands. This fine partitioning enables the
isolation of narrowband oscillations into distinct WPT nodes. Such granularity is
crucial for disentangling spectrally overlapping components, which might other-
wise obscure these subtle biomarkers in raw signal analysis or traditional spectral
methods.

Ultimately, the Db4 WPT transforms the sEEG signal into a rich feature space
where pathological patterns are simultaneously time-localized and frequency-resolved.
This allowsmachine learningmodels to identify more discriminative patterns: rip-
ples and HFOs can manifest as sustained energy in specific high-frequency sub-
bands,while spikes appear as transient energy bursts across adjacent bands. This
enhanced representation offers superior discriminative power compared tometh-
ods relying only on static spectral features or time-domain morphology.

14

0 5 10 15 20 25 30
Time (s)

20

40

60

80

100

120

Fr
eq

ue
nc

y
(H

z)

sub-CHUL23 / C3

3000

2000

1000

0

1000

Figure 5: Db-4 WPT of a 35 second window of a given channel for patient sub-
CHUL23

3.5 PyTorch implementation

To facilitate this work, PyTorch [10] implementations of the Daubechies-4Wavelet
Packet Transform (WPT) for an arbitrary number of decomposition levels (see
Appendix A.1.1) and a customDataset class (Appendix A.1.2)were developed. This
custom class handles notch-filtering, global indexing of fixed-length clips from
the HUP and CHUL datasets, and on-the-fly WPT computation. For each retrieved
item, it provides the patient ID, WPT features, channel names, and SOZ multi-hot
labels. Such data engineering was foundational to the project’s success. A special
collate function is also provided, to ensure compatibility with Dataloaders.

15

0 20 40 60 80 100 120
Frequency (Hz)

300

250

200

150

100

50

0

Am
pl

itu
de

 (d
B)

Normal Filter Amplitude Response (dB)

European utility frequency

0 20 40 60 80 100 120
Frequency (Hz)

600

500

400

300

200

100

0

Am
pl

itu
de

 (d
B)

sosfiltfilt Amplitude Response (dB)

European utility frequency

0 20 40 60 80 100 120
Frequency (Hz)

1

0

1

2

3

Ph
as

e
(ra

di
an

s)

Normal Filter Phase Response
European utility frequency

0 20 40 60 80 100 120
Frequency (Hz)

0

Ph
as

e
(ra

di
an

s)

sosfiltfilt Phase Response
European utility frequency

Notch Filter Response (Quality Factor = 40)

Figure 6: Mains frequency interference in CHUL signals is removed using a notch
filter applied with a forward-backward technique (filtering again the time-reversed
filtered signal) to ensure zero phase distortion.

16

4 First approach:ModelingAnomalies on a self-supervised
DCGRU model

We began by training a Diffusion Convolutional Gated Recurrent Unit[11] (DCGRU),
a recurrent graph neural network based on the Diffusion Convolutional Recurrent
Neural Network [12]. This model was designed for a self-supervised prediction
task, where it minimized a regression loss between the Discrete Fourier Trans-
forms (DFTs) of actual and predicted signals. The subsequent step intended to
utilize normalizing flows [13]–[16] for anomaly detection on the encoder’s output.
However, despite successfully training the self-supervised prediction model, our
experiments did not progress significantly in this direction. Initial observations of
regression prediction error peaks showed no consistent correlation with Seizure
Onset Zone (SOZ) localization, as the error appeared constant over time.

Consequently, we shifted to a second approach that proved considerably more
promising. This involved exploiting label information and capturing long-distance
dependencies using a full-attention transformer encoder, enhanced with spatial
attention and contrastive pre-training. This methodology is detailed in the subse-
quent section.

time

x1 x′
1

x2 x′
2

x3 x′
3

x4 x′
4

x5 x′
5

x1

x̂′
1

DCGRU(0)
enc

DCGRU
(0)
dec

DCGRU(1)
enc

DCGRU
(1)
dec

DCGRU(2)
enc

DCGRU
(2)
dec

Wproj

x2

x̂′
2

DCGRU(0)
enc

DCGRU
(0)
dec

DCGRU(1)
enc

DCGRU
(1)
dec

DCGRU(2)
enc

DCGRU
(2)
dec

Wproj

x3

x̂′
3

DCGRU(0)
enc

DCGRU
(0)
dec

DCGRU(1)
enc

DCGRU
(1)
dec

DCGRU(2)
enc

DCGRU
(2)
dec

Wproj

x4

x̂′
4

DCGRU(0)
enc

DCGRU
(0)
dec

DCGRU(1)
enc

DCGRU
(1)
dec

DCGRU(2)
enc

DCGRU
(2)
dec

Wproj

x5

x̂′
5

DCGRU(0)
enc

DCGRU
(0)
dec

DCGRU(1)
enc

DCGRU
(1)
dec

DCGRU(2)
enc

DCGRU
(2)
dec

Wproj

GO

h
(0)
1

h
(1)
1

h
(2)
1

h′(0)
1

h′(1)
1

h′(2)
1

x′
1

h
(0)
2

h
(1)
2

h
(2)
2

h′(0)
2

h′(1)
2

h′(2)
2

x′
2

h
(0)
3

h
(1)
3

h
(2)
3

h′(0)
3

h′(1)
3

h′(2)
3

x′
3

h
(0)
4

h
(1)
4

h
(2)
4

h′(0)
4

h′(1)
4

h′(2)
4

x′
4

h
(0)
5

h′(0)
5

h
(1)
5

h′(1)
5

h
(2)
5

h′(2)
5

h
(0)
0 = 0 H

(0)
out

H
(0)
out

h
(1)
0 = 0 H

(1)
out

H
(1)
out

h
(2)
0 = 0 H

(2)
out

H
(2)
out

Next frame prediction using RNNs - zacharie.rodiere@ens-lyon.fr

3 layer unrolled DCGRU encoder with a sequence length of 5

3 layer unrolled DCGRU decoder with a sequence length of 5

Figure 7: An unrolled DCGRU recurrent neural network, with a sequence length of
5 and a network depth of 3. In practice, I trained a network with a sequence length
of 12 and a depth of 3.

17

4.1 Diffusion convolution operation

This model, developed by Siyi Tang and collaborators from Stanford University,
incorporates a diffusion process over a graph linking EEG electrodes, allowing for
self-supervised spatio-temporal modeling of EEG signals. This approach naturally
adapts to the sEEG modality, a crucial step for the implementation of which is to
compute a prior connectivity graph from the sEEG signals themselves. This is
where the core of the model’s spatial reasoning comes in: the diffusion process it
employs effectively models spatial dependencies within this graph by accounting
for the influence of a random walk over a K-hop neighborhood.

At its heart, this mechanism relies on the diffusion convolution process, a funda-
mental operation in many Graph Neural Networks (GNNs). This process is specif-
ically designed to capture and aggregate information by mimicking a diffusion-
like spreading of features across a graph’s structure. In essence, it generalizes the
concept of convolution, whichwe typically associate with grid-structured data like
images, to the more complex and arbitrary connections found in graph data.

Figure 8: Diffusion Convolution process, as illustrated in [17]

4.1.1 Undirected graphs

A diffusion convolution aims to compute a new representation for each node by
combining its own features with those of its neighbors, and its neighbors’ neigh-
bors, up to a certain "diffusion depth" or "receptive field" of K hops. This process
effectively allows information to "diffuse" outwards from each node.

The mathematical formulation for the diffusion convolution of the m-th feature
across the graph G can be expressed as:

X:,m⋆Gfθ = Φ

(K−1∑

k=0

θkΛ
k

)
Φ⊺X:,m =

K−1∑

k=0

θkL
kX:,m =

K−1∑

k=0

θ̃kTk(L̃)X:,m form ∈ {1, ...,M}

(1)
With:

18

https://siyitang.me/

• X:,m: This denotes the m-th feature vector across all nodes in the graph. If
X ∈ RN×M is the input feature matrix, whereN is the number of nodes and
M is the number of input features, then X:,m is the m-th column of X . The
diffusion convolution operates on each feature dimension independently.

• fθ: This represents the convolution filter parameterized by θ.

• L: This is the Graph Laplacian matrix. For an undirected graph, the unnor-
malized Laplacian is defined as L = D −A, where D is the degree matrix
(a diagonal matrix with node degrees on the diagonal) and A is the adja-
cency matrix. The Laplacian is a discrete analogue of the Laplace operator
and plays a crucial role in spectral graph theory, characterizing the graph’s
connectivity and diffusion properties.

Different ways of seeing the diffusion convolution operator:

• Spectral domain -Φ
(∑K−1

k=0 θkΛ
k

)
Φ⊺X:,m: this is the definition of diffusion

convolution in the spectral domain, with:

– Φ the matrix of eigenvectors of the graph Laplacian L. These eigen-
vectors form an orthonormal basis for the graph, akin to Fourier basis
functions for grid-structured data.

– Λ the diagonalmatrix of eigenvalues, such thatL = ΦΛΦ⊤. The eigen-
values correspond to frequencies in the graph spectrum.

– Φ⊤X:,m: This operation projects the input feature vectorX:,m onto the
eigenbasis of the Laplacian, transforming it into the spectral domain
(similar to a Graph Fourier Transform).

–
∑K−1

k=0 θkΛ
k: This term represents the learnable filter applied in the spec-

tral domain. It’s a polynomial of the eigenvalues Λ. Each θk is a learn-
able parameter that dictates how much influence information corre-
sponding to a particular ’frequency’ (eigenvalue) contributes to the out-
put.

– Φ (. . .) This projects the filtered spectral representation back to the
original node domain.

• Spatial domain -
∑K−1

k=0 θkL
kX:,m. This equality directly stems from the spec-

tral decomposition of the Laplacian: since L = ΦΛΦ⊤.

– LkX:,m: This term represents applying the Laplacian operator k times
to the feature vector. Intuitively, applying L once aggregates informa-
tion from immediate neighbors (1-hop). Applying L2 aggregates infor-

19

mation from 2-hop neighbors, and so on. Higher powers of L corre-
spond to aggregating information fromnodes further away in the graph.

–
∑K−1

k=0 θk (. . .): This is a linear combination of these multi-hop aggre-
gated features. The learnable parameters θk act as weights, allowing
the model to learn the importance of information from different "dis-
tances" (hops) away from a node. This directly corresponds to a diffu-
sion process, where information spreads out in discrete steps.

• Chebyshev Polynomial Approximation -
∑K−1

k=0 θ̃kTk(L̃)X:,m. While the pre-
vious form is intuitive, directly computing powers ofL can be computation-
ally expensive for large graphs, especially for highK . Furthermore, the eigen-
values ofL can span a wide range, whichmight lead to numerical instability
or issues with filter localization. To address this, the spectral filter (the poly-
nomial of eigenvalues) is often approximated using a truncated expansion
of Chebyshev polynomials of the first kind, denoted by Tk(x).

– L̃ = I − D−1/2AD−1/2: This is the symmetric normalized Laplacian.
It’s used because its eigenvalues are guaranteed to lie within the range
[0,2] (or scaled to [1,1] for Chebyshev polynomials), which is ideal for
the stability and properties of Chebyshev approximations.D−1/2 is the
inverse square root of the degree matrix.

– Tk(L̃): These are the Chebyshev polynomials evaluated at the normal-
ized Laplacian. They are defined recursively: T0(x) = 1, T1(x) = x, and
Tk(x) = 2xTk−1(x)−Tk−2(x). This recursive property means that Tk(L̃)
can be computed efficiently without explicit matrix exponentiation or
eigenvalue decomposition.

– θ̃k: These are the new learnable coefficients (parameters) in the Cheby-
shev basis. These coefficients effectively define the shape of the con-
volution filter in the spectral domain. This approximation makes graph
convolutional networks computationally tractable and localized, as the
filter is a K-localized polynomial that only considers information up to
K hops away.

In summary, the diffusion convolution process uses the mathematical properties
of the graph Laplacian to provide an efficient method for aggregating information
across graph neighborhoods.

4.1.2 Directed graphs

X:,m⋆Gfθ =
K−1∑

k=0

(
θk,1(D

−1
O W)k + θk,2(D

−1
I W ⊺)k

)
X:,m for m ∈ {1, ...,M} (2)

20

The diffusion equation for directed graphs, as utilized in models like the Diffusion
Convolutional Gated Recurrent Unit (DCGRU), extends standard graph convolu-
tion to account for the inherent directionality of edges. It involves two distinct
state transition matrices: Pout = D−1

O W for outward diffusion and Pin = D−1
I W ⊺

for inward diffusion. Here,W represents the edge-weighted adjacencymatrix,DO

is the diagonal out-degree matrix, and DI is the diagonal in-degree matrix. Each
term captures the weighted sum of features propagating either from a node to
its out-neighbors (outward) or from its in-neighbors to the node itself (inward),
normalized by the respective degrees. The overall diffusion process combines
these directional propagations over multiple steps, effectively modeling informa-
tion flow or influence spreading across the directed graph structure.

4.2 Connectivity Graphs

The effectiveness of the diffusion process is highly dependent on the underlying
graph structure. We explored two distinct approaches for constructing connectiv-
ity graphs among EEG electrodes: one based on physical proximity and another
on functional connectivity.

4.2.1 Distance-Based Graph

This approach leverages the physical Euclideandistance between electrode place-
ments. Similarity sij between electrodes i and j is calculated using a Gaussian
kernel:

sij = e−
dij

σ2

where dij is the Euclidean distance and σ is a scaling parameter. A higher simi-
larity indicates closer proximity. A critical limitation for this dataset, however, was
the incomplete availability of real-life electrode coordinates, which are typically in-
ferred fromMRI scans. Consequently, this method could not be uniformly applied
to all patients. The resulting graph is then thresholded, with all edges falling below
a similarity value of κ ∈ [0, 1] being removed to ensure sparsity.

21

Figure 9: Example of a distance-based connectivity graph.

4.2.2 Connectivity-Based Graph (Phase Locking Value)

To overcome the limitations of physical distance, we also utilized functional con-
nectivity measures, specifically the Phase Locking Value (PLV). PLV quantifies
the phase synchronicity between two signals and is well-suited for capturing dy-
namic interactions between brain regions.
The PLV between two channels in a given time window is defined as:

∣∣∣∣∣E
{
ei(ϕ1(t)−ϕ2(t))

}
∣∣∣∣∣

where ϕ1(t) and ϕ2(t) are the instantaneous phases of the two signals. These
instantaneous phases are derived via theHilbert transform. For a real signal x(t),
its analytic signal z(t) is given by:

z(t) = x(t) + iH{x(t)}

Here, H{x(t)} represents the Hilbert transform of x(t). Conceptually, the analytic
signal corresponds to the inverse Fourier transform of 2U(f)X(f), whereX(f) =
F{x(t)} (the Fourier transform of x(t)) and U(f) is the Heaviside step function,
which removes negative frequencies. The factor of two preserves signal energy.
The presence of a non-zero imaginary component in the inverse Fourier transform

22

allows for the definition of the instantaneous amplitude A(t) and phase ϕ(t):

A(t) =

√
x2(t) +H{x(t)}2

ϕ(t) = atan2(H{x(t)}, x(t))
We used the average PLV computed over a defined time period as the measure
of connectivity between two nodes. A key advantage of PLV is its focus solely
on phase relationships, making it robust to variations in instantaneous amplitude
thatmight arise from electrode placement or signal gain differences. Connectivity
graphs derived from PLV can either be directly thresholded or made sparse using
methods like the graphical lasso.

Figure 10: Unthresholded Phase Locking Value (PLV) connectivity for a single pa-
tient within a defined time period

23

Figure 11: Thresholded PLV connectivity

4.3 DCGRU cell

The Diffusion Convolutional Gated Recurrent Unit (DCGRU) cell extends the stan-
dard Gated Recurrent Unit (GRU) by incorporating the previously presented diffu-
sion convolutions within its core operations. This modification is crucial for effec-
tively capturing spatial dependencies inherent in graph-structured data, such as
EEG signals. Specifically, diffusion convolutions, represented by Θ·⋆G , are applied
to the inputs of both the reset gate (r(t)) and the update gate (u(t)). These gates,
defined as:

r(t) = σ
(
Θr⋆G[X

(t),H(t−1)] + br

)
u(t) = σ

(
Θu⋆G[X

(t),H(t−1)] + bu

)

regulate the flow of information from the previous hidden state (H(t−1)) and the
current input (X(t)). The diffusion convolution is also applied during the calcula-
tion of the candidate hidden state (C(t)), which determines potential new infor-
mation to be incorporated. The candidate is computed as:

C(t) = tanh
(
ΘC⋆G[X

(t), (r(t) ⊙H(t−1))] + bC

)

Here, [X(t),H(t−1)] denotes the concatenation of the input vector and the previous
hidden state, while ⊙ signifies the Hadamard (element-wise) product. Finally, the

24

new hidden state (H(t)) is generated by selectively combining the previous hidden
state and the candidate hidden state using the update gate:

H(t) = u(t) ⊙H(t−1) + (1− u(t))⊙C(t)

This architecture allows the DCGRU to effectively model spatio-temporal depen-
dencies by enabling the gates and candidate state to leverage neighborhood in-
formation propagated through the diffusion convolutions.

Figure 12: Classical GRU cell for reference, here adapted with diffusion convolu-
tions for spatio-temporal modeling

4.4 Encoder-Decoder Architecture for Spatio-Temporal Predic-
tion

Wefirst employed an encoder-decoder framework (Figure 7) for a self-supervised,
next-frame prediction task. This architecture, built fromstackedDCGRUcells, was
designed to learn the underlying spatio-temporal dynamics of the sEEG signals.
The encoder processes a sequence of input frames (e.g., DFTs of short clips,
x1, . . . , xT) and compresses this information into a set of hidden state representa-
tions. Thedecoder’s task is to then generate a sequenceof future frames (x′

T+1, . . . , x
′
2T)

based on the information provided by the encoder.
In a standard implementation, the final hidden states of the encoder are used
as an initial context vector for the decoder. At each decoding step, the attention
mechanism allows the decoder to dynamically weigh and access all of the en-
coder’s hidden states, creating a context vector tailored to each output frame.
During training, we utilized teacher forcing, where the ground-truth frame from
the previous timestep was fed as input to the decoder to ensure stable and ef-
ficient learning. The model is then run in a fully autoregressive manner during

25

inference. Despite successfully training the prediction model, the resulting repre-
sentations did not provide a clear, discriminative signal for anomaly detection cor-
responding to the SOZ. This valuable finding suggested that a direct, supervised
approach would be more fruitful, leading us to the Transformer-based architec-
ture presented next.

26

5 Transformer-basedSOZDetectionwithContrastive
Pre-training

5.1 Model Architecture: A Transformer for Channel-wise SOZ-
Detection

To overcome the limitations of the graph-basedmodel, we designed a supervised
deep learning pipeline centered on a Transformer encoder. This architecture is
fundamentally designed to process sEEG channels as an unordered set, which
makes it inherently flexible and capable of generalizing across patients with dif-
ferent numbers and layouts of implanted electrodes. Instead of predicting future
signals, this model directly classifies each channel within a given time window
(35 seconds) as either SOZ or non-SOZ.

Input Tokenization The pipeline begins by creating ameaningful, fixed-size rep-
resentation, or "token," for each sEEG channel from its signal. For each channel’s
35-second window, we first compute its Daubechies-4 Wavelet Packet Transform
(WPT), as detailed in Section 3.4. This high-dimensional WPT output is then flat-
tened andpassed through a linear projection layer to produce a2048-dimensional
vector, which serves as the input token for the Transformer. The input to our
model is thus a sequence of these channel tokens.We deliberately omit traditional
positional encodings, as there is no single, natural ordering of electrode channels
in a typical sEEG implantation. By forgoing a fixed positional prior, we force the
model’s spatial self-attention mechanism to learn all inter-channel relationships
directly from the data, guided purely by the classification task.

Spatial Self-Attention as Learned Connectivity The sequence of channel to-
kens is fed into a multi-layer Transformer encoder, where the core operation is
a multi-head self-attention mechanism applied across the channel dimension.
This "spatial attention" computes a context-aware representation for each chan-
nel by aggregating information from all other channels. For each attention head,
the mechanism learns a dynamic, directed connectivity graph for every input
sample, where attention scores represent the strength of influence between chan-
nels. This approach is a fundamental advantage over the DCGRU model, which
relied on a static, pre-computed connectivity graph. The Transformer, in contrast,
learns a functional connectivity that is both data-driven and optimized specifically
for SOZ detection, considering the complete spatial context rather than a fixed K-
hop neighborhood.

27

Two-Stage Training Framework The output of the Transformer encoder is a set
of refined embeddings (hi), one for each channel, that are rich in contextual infor-
mation. These embeddings form the basis for our two-stage training regimen,
as depicted in Figure 13. The process involves an initial contrastive pre-training
stage—using a dedicated projection head and a focal class-balanced supervised
contrastive loss—followed by a classification fine-tuning stage that uses a final
classification head and a focal class-balanced BCE loss. The specifics of these
two stages are elaborated in the subsequent sections.

28

Channel 1
raw signal

Channel 2
raw signal

. . . Channel C
raw signal

Level-5
Db4 WPT

Level-5
Db4 WPT

Level-5
Db4 WPT

f1 f2 fC. . .

Linear

t1 t2 tC. . .

Layer Norm

Multi-Head
Self-Attention

+

Layer Norm

MLP

+

h1 h2 hC. . .

MLP

h′
1 h′

2 h′
C

. . .

Time-frequency features

Input token sequence

Learned representations

Transformer Encoder −→

Projection Head −→

Projected representations for contrastive pre-training

L×

Encoder with contrastive
pre-training head.

Channel 1
raw signal

Channel 2
raw signal

. . . Channel C
raw signal

Level-5
Db4 WPT

Level-5
Db4 WPT

Level-5
Db4 WPT

f1 f2 fC. . .

Linear

t1 t2 tC. . .

Layer Norm

Multi-Head
Self-Attention

+

Layer Norm

MLP

+

h1 h2 hC. . .

Linear

Sigmoid

p̂1 p̂2 p̂C. . .

Time-frequency features

Input token sequence

Learned representations

Transformer Encoder −→

SOZ scores

L×

Encoder with fine-tuning head.

Figure 13: Architecture of the proposed two-stage training and fine-tuning model.
Both stages leverage a shared Transformer Encoder backbone to process
channel-wise information. (a) Stage 1: Contrastive Pre-training. The model
learns to create discriminative representations. Raw sEEG is processed by aWPT
and a linear layer to generate input tokens for anL-layer Transformer Encoder. The
resulting embeddings (hi) are passed through anMLP projection head to get final
representations (h′

i) used for the contrastive loss calculation. (b) Stage 2: Clas-
sification Fine-tuning. The model is adapted for SOZ detection. The pre-training
head is removed, and the frozen or fine-tuned encoder backbone produces chan-
nel embeddings (hi). These are fed into a classification head (a linear layer and
sigmoid activation) to output the final SOZ probability scores (p̂i). This two-stage
approach allows themodel to first learn robust signal features before specializing
on the classification task.

29

Figure 14: Attention map seen as a directed graph. The center graph shows the
upper right triangle of the attention matrix, while the rightmost graph shows the
lower triangle. Attention flows fromqueries (line indices) to keys (column indices).
Arrows not shown for clarity.

5.2 Contrastive Pre-training with a Focal Class-Balanced Loss

The first stage of our training pipeline is a pre-training phase designed to learn
highly discriminative channel embeddings. The goal is to structure the latent space
such that representations of SOZ and non-SOZ channels form distinct, compact
clusters. This task faces two significant challenges inherent in sEEG data: severe
class imbalance, as non-SOZ channels vastly outnumber SOZ channels, and the
presence of both easy and hard examples within each class. To address these
challenges simultaneously, we employ a sophisticated loss function that inte-
grates ideas from Supervised Contrastive learning [18], class-balanced loss [19],
and focal loss [20].

The foundation of our approach is theSupervisedContrastive (SupCon) loss,which
extends the self-supervised contrastive framework to a fully supervised setting.
For a given "anchor" channel embedding, the loss aims to pull embeddings of the
sameclass (the "positives") closer together, while pushing away embeddings from
all other classes (the "negatives").

To handle the class imbalance, we incorporate a class-balancingweight based on
the concept of "effective number of samples." This weighting scheme re-balances
the loss by assigning a higher weight to minority classes (i.e., the SOZ channels).
The weight for a given anchor i belonging to class yi is defined as:

wCB
i =

1− β

1− βNyi

where Nyi is the number of training samples in class yi and β ∈ [0, 1) is a hyper-

30

parameter that controls the degree of re-weighting. As β → 1, this term provides
a significant boost to the loss contribution from rare classes.

To focus the training onmore difficult examples, we introduce a focal modulation
term. The intuition is that easy-to-classify positive pairs (those already close in the
embedding space) should contribute less to the overall loss, allowing themodel to
concentrate on harder pairs. This is achieved by modulating the standard cross-
entropy loss with a factor of (1 − pip)

γ , where pip is the contrastive probability of
correctly matching anchor i with its positive partner p. The probability pip is cal-
culated as:

pip =
exp(sim(zi, zp)/τ)∑

k∈A(i) exp(sim(zi, zk)/τ)

Here, z are the channel embeddings from the projection head,A(i) is the set of all
other embeddings in the batch (both positive and negative), and τ is the temper-
ature hyperparameter. When a pair is easy (pip → 1), the focal term approaches
zero, down-weighting its contribution.

By combining these elements, we arrive at the final Focal Class-Balanced Super-
vised Contrastive Loss, which we aggregate over all anchor channels i in a batch:

LF-CB-SC =
∑

i∈I

wCB
i

−1

|P (i)|
∑

p∈P (i)

(1− pip)
γ log(pip) (3)

where P (i) is the set of positive examples for anchor i in the batch. This compos-
ite loss function effectively guides the pre-training process to learn an embedding
space that is robust to class imbalance and focused on the most informative ex-
amples, creating an ideal foundation for the downstream classification task.

31

Figure 15: Pairwise cosine similarity distributions for validation patient CHUL19 af-
ter pre-training. The clear separation between same-class pairs (high similarity)
and different-class pairs (low similarity) demonstrates that the supervised con-
trastive loss has successfully structured the embedding space.

32

Figure 16: Similarity distributions for training patient CHUL21, showing highly effec-
tive clustering. The separation is so pronounced that the distribution for different-
class (SOZ-non-SOZ) pairs is pushed towards zero similarity, partially outside the
plot’s visible frame.

33

Figure 17: An example of strong class separation on the training set for patient
HUP163. The distributions for same-class pairs are tightly clustered at high simi-
larity, while the distribution for different-class pairs is distinctly separated at low
similarity, confirming the success of the pre-training objective.

5.3 Fine-tuning for SOZ Channel Classification

After the contrastive pre-training stage, the model has learned a powerful and
well-structured representation of sEEG channels. The second and final stage of
our pipeline is to fine-tune this pre-trained model for the specific downstream
task of Seizure Onset Zone (SOZ) classification. For this, the contrastive projec-
tion head is removed and replacedwith a new classification head, which consists
of a linear layer that maps the learned channel embeddings (hi) to a single logit,
followed by a sigmoid activation function to produce a SOZ probability score be-
tween 0 and 1 for each channel.

The critical challenge of class imbalance persists during this phase. To prevent
the model’s predictions from being biased towards the vastly more numerous
non-SOZ channels, we adapt the principles from the pre-training loss to the classi-
fication setting. We employ a Focal Class-Balanced Binary Cross-Entropy (BCE)
Loss, which modifies the standard BCE loss to prioritize both the minority class

34

and hard-to-classify examples.

The standard BCE loss for a single channel prediction is − log(pt), where pt is the
predicted probability for the ground truth class. Our loss function enhances this
in two ways. First, we apply the same class-balancing weight (wCB

n) used during
pre-training, which is calculated based on the effective number of samples with
hyperparameter β. This weight significantly increases the loss contribution from
the minority SOZ class, forcing the model to learn its features effectively.

Second, we incorporate the focal modulation factor (1 − pnt)
γ , where γ is the fo-

cusing parameter. This term reduces the loss for well-classified examples (where
the predicted probability for the true class, pnt , is high), thereby focusing the train-
ing on "hard" examples where the model is less confident.

Combining these elements, the complete Focal Class-Balanced BCE loss, aggre-
gated over all N channels in a batch, is defined as:

LF-CB-BCE = − 1

N

N∑

n=1

wCB
n (1− pnt)

γ log(pnt) (4)

where pnt is defined as pn if the true label yn = 1, and 1− pn if yn = 0, with pn being
the sigmoid output for channel n. By starting with the rich, context-aware features
from the pre-trained encoder and fine-tuning with this robust, imbalance-aware
loss function, the model learns to accurately and reliably identify SOZ channels.

Staged Fine-tuning Strategy The fine-tuning process itself was conducted in-
crementally to preserve the rich features learned during pre-training. Our initial
strategy involved freezing the entire Transformer encoder backbone and training
only the parameters of the newly added linear classification head. This approach,
however, failed to produce a meaningful classifier, yielding an Area Under the Re-
ceiver Operating Characteristic (AUROC) of approximately 0.5, equivalent to ran-
dom guessing. This result strongly suggests that the representations learned via
contrastive pre-training, while well-clustered, were not linearly separable. A single
linear layer possessed insufficient expressive power to find a decision boundary
in the complex embedding space. In retrospect, a more powerful classification
head, such as a Multi-Layer Perceptron (MLP), might have been more effective at
this stage by introducing non-linearity. To achieve successful classification, it was
therefore necessary to adopt a more comprehensive approach: we proceeded to
gradually unfreeze the layers of the Transformer encoder, starting from the final

35

layer and moving downwards, fine-tuning them with a small learning rate. This al-
lowed the model to subtly adapt its core representations to the specific demands
of the SOZ classification task, ultimately leading to a high-performing classifier.

Figure 18: Global Receiver Operating Characteristic (ROC) curve aggregated over
all patients in the validation set. The model achieves an AUROC of 0.608 using
35-second signal clips.

36

Figure 19: Global distribution of predicted SOZ scores, aggregated from all vali-
dation patients. The slight separation, with SOZ channels (blue) shifted towards
higher probabilities than non-SOZ channels (orange), visually corresponds to the
global AUROC of 0.608.

37

Figure 20: Example of strong classification performance on the training set for
patient CHUL16, achieving an AUROC of 0.74.

38

Figure 21: The corresponding score distribution for patient CHUL16. The high AU-
ROC is reflected in a clear separation between the SOZ and non-SOZ score distri-
butions.

39

Figure 22: ROC curve for patient HUP138 from the validation set, demonstrating
above-average performance for a single patient with an AUROC of 0.66.

40

Figure 23: The corresponding score distribution for patient HUP138. The higher
AUROC is visually confirmed by a more pronounced separation between the SOZ
(blue) and non-SOZ (orange) score distributions.

5.4 Preliminary Results and Discussion

Upon completion of the two-stage training process, the model was evaluated on
the held-out validation set, achieving an Area Under the Receiver Operating Char-
acteristic (AUROC) of 0.60. While this result is modest and indicates that the
classifier is not yet performing at a state-of-the-art level, its significance lies in
the challenging conditions under which it was obtained. This performance was
achieved using input clips of only 35 seconds of sEEG signal. The ability of the
model to extract any meaningful, discriminative signal for SOZ localization from
such a brief temporal window is in itself a remarkable outcome, as it suggests
the spatial attention mechanism is effectively identifying complex, latent spatio-
temporal biomarkers.

This result should therefore be interpreted as a strong proof-of-concept for our
proposedmethodology. The architecture, pre-training strategy, and loss functions
have successfully created a system capable of learning from this challenging
data. We anticipate that performance can be substantially improved through two

41

primary avenues. First, as more training data becomes available through our on-
going collaboration, the model will be exposed to a wider variety of patient cases
and seizure patterns, which is critical for generalization and improved accuracy.
Second, by implementing the hierarchical architecture discussed as future work—
first aggregating features with a temporal attentionmechanism before the spatial
attention stage—themodel will be better equipped to capture the evolving tempo-
ral dynamics of seizure precursors. The combination of a larger dataset and a
more powerful, temporally-aware architecture provides a clear path toward de-
veloping a high-performance model for SOZ detection that could have significant
clinical impact.

42

6 Conclusion and Future Work

This research has successfully demonstrated the potential of a Transformer-based
architecture, enhancedby a spatial contrastive pre-training strategy and focal class-
balanced loss functions, for the challenging task of Seizure Onset Zone detection
from sEEG data. Our approach effectively addresses class imbalance and learns
discriminative channel-specific representations,moving beyondfixedgraph struc-
tures by allowing the model to learn dynamic inter-channel relationships through
spatial attention. The promising preliminary results, including the presentation at
the GSP Workshop, underscore the viability of this methodology.

Looking ahead, a key avenue for extending this work is to overcome the limi-
tations of the 35-second analysis window, which may not capture longer-term
electrophysiological patterns that are crucial for seizure prediction. A hierarchical
Transformer architecture presents a compelling next step specifically designed
to solve this problem. This approach would enable the analysis of much longer
recordings (e.g., five minutes or more) in a computationally efficient manner.

The process would involve two stages. First, a long signal would be divided into a
sequence of shorter, non-overlapping sub-windows (e.g., 5 or 10-second clips).
A temporal attention mechanism would then operate along the time axis for
each channel independently, learning to aggregate features and create a single,
context-aware summary representation for each sub-window. The result would
be a much shorter sequence of summary vectors for each channel. These con-
densed sequences, which now represent long-term dynamics, would then be fed
into the spatial Transformer encoder, as described in this report. Themodel could
then perform its spatial attention on these temporally-aware summaries tomodel
complex, long-range functional connectivity. Such an architecture would be far
more powerful, allowing the model to learn from the slow build-up of seizure ac-
tivity and significantly improving its potential for clinical application.

Further research could also explore the integration of other modalities, the re-
finement of wavelet packet parameters, or advanced techniques for interpreting
the learned spatial attention maps to provide clinicians with greater insight into
the model’s decision-making process. With these promising avenues for develop-
ment, we aim to significantly advance this research and prepare a comprehensive
manuscript for submission to the International Conference on LearningRepresen-
tations (ICLR) in the fall of 2025, for the 2026 conference.

43

References

[1] L. Qi, X. Fan, X. Tao, et al., “Identifying the Epileptogenic Zone With the Rel-
ative Strength of High-Frequency Oscillation: A Stereoelectroencephalog-
raphy Study,” Frontiers in Human Neuroscience, vol. 14, Jun. 9, 2020, ISSN:
1662-5161. DOI: 10.3389/fnhum.2020.00186. [Online]. Available: https:
//www.frontiersin.org/journals/human-neuroscience/articles/10.
3389/fnhum.2020.00186/full.

[2] H. E. Goldstein, B. E. Youngerman, B. Shao, et al., “Safety and efficacy of
stereoelectroencephalography in pediatric focal epilepsy: A single-center
experience,” Journal of Neurosurgery: Pediatrics, vol. 22, no. 4, pp. 444–452,
Jul. 20, 2018, ISSN: 1933-0715, 1933-0707. DOI: 10.3171/2018.5.PEDS1856.
[Online]. Available: https://thejns.org/pediatrics/view/journals/j-
neurosurg-pediatr/22/4/article-p444.xml.

[3] P. Chauvel, The History and Principles of Stereo EEG. Springer Publish-
ing Company, Aug. 20, 2023, ISBN: 978-0-8261-3692-3. [Online]. Available:
https://connect.springerpub.com/content/book/978-0-8261-3693-
0/part/part01/chapter/ch01.

[4] F. Tadel, S. Baillet, J. C. Mosher, D. Pantazis, and R. M. Leahy, “Brainstorm:
A User-Friendly Application for MEG/EEG Analysis,” Computational Intelli-
gence and Neuroscience, vol. 2011, no. 1, p. 879 716, 2011, ISSN: 1687-5273.
DOI: 10.1155/2011/879716. [Online]. Available: https://onlinelibrary.
wiley.com/doi/abs/10.1155/2011/879716.

[5] C. Holdgraf, S. Appelhoff, S. Bickel, et al., “iEEG-BIDS, extending the Brain
Imaging Data Structure specification to human intracranial electrophysiol-
ogy,” Scientific Data, vol. 6, no. 1, p. 102, Jun. 25, 2019, ISSN: 2052-4463. DOI:
10.1038/s41597-019-0105-7. [Online]. Available: https://www.nature.
com/articles/s41597-019-0105-7.

[6] J. M. Bernabei, A. Li, A. Y. Revell, et al., HUP iEEG Epilepsy Dataset, Open-
neuro, 2023. DOI: 10.18112/OPENNEURO.DS004100.V1.1.3. [Online]. Avail-
able: https://openneuro.org/datasets/ds004100/versions/1.1.3.

[7] I. Daubechies, Ten Lectures on Wavelets (Regional Conference Series in Ap-
plied Mathematics 61), 9. print. Philadelphia, Pa: Society for Industrial and
Applied Mathematics, 2006, 357 pp., ISBN: 978-0-89871-274-2.

[8] O. Grinenko, J. Li, J. C. Mosher, et al., “A fingerprint of the epileptogenic zone
in human epilepsies,” Brain: A Journal of Neurology, vol. 141, no. 1, pp. 117–
131, Jan. 1, 2018, ISSN: 1460-2156. DOI: 10 . 1093 / brain / awx306. PMID:
29253102.

44

https://doi.org/10.3389/fnhum.2020.00186
https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2020.00186/full
https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2020.00186/full
https://www.frontiersin.org/journals/human-neuroscience/articles/10.3389/fnhum.2020.00186/full
https://doi.org/10.3171/2018.5.PEDS1856
https://thejns.org/pediatrics/view/journals/j-neurosurg-pediatr/22/4/article-p444.xml
https://thejns.org/pediatrics/view/journals/j-neurosurg-pediatr/22/4/article-p444.xml
https://connect.springerpub.com/content/book/978-0-8261-3693-0/part/part01/chapter/ch01
https://connect.springerpub.com/content/book/978-0-8261-3693-0/part/part01/chapter/ch01
https://doi.org/10.1155/2011/879716
https://onlinelibrary.wiley.com/doi/abs/10.1155/2011/879716
https://onlinelibrary.wiley.com/doi/abs/10.1155/2011/879716
https://doi.org/10.1038/s41597-019-0105-7
https://www.nature.com/articles/s41597-019-0105-7
https://www.nature.com/articles/s41597-019-0105-7
https://doi.org/10.18112/OPENNEURO.DS004100.V1.1.3
https://openneuro.org/datasets/ds004100/versions/1.1.3
https://doi.org/10.1093/brain/awx306
http://www.ncbi.nlm.nih.gov/pubmed/29253102

[9] N. Roehri, J.-M. Lina, J. C. Mosher, F. Bartolomei, and C.-G. Bénar, “Time-
Frequency Strategies for Increasing High-Frequency Oscillation Detectabil-
ity in Intracerebral EEG,” IEEE Transactions on Biomedical Engineering,
vol. 63, no. 12, pp. 2595–2606, Dec. 2016, ISSN: 1558-2531. DOI: 10.1109/
TBME.2016.2556425. [Online]. Available: https://ieeexplore.ieee.org/
document/7458827.

[10] A. Paszke, S. Gross, F. Massa, et al., “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Advances in Neural Information
Processing Systems, vol. 32, Curran Associates, Inc., 2019. [Online]. Avail-
able: https : / / papers . nips . cc / paper _ files / paper / 2019 / hash /
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[11] S. Tang, J. Dunnmon, K. K. Saab, et al., “Self-Supervised Graph Neural Net-
works for Improved Electroencephalographic Seizure Analysis,” presented
at the International Conference on Learning Representations, Oct. 6, 2021.
[Online]. Available: https://openreview.net/forum?id=k9bx1EfHI_-.

[12] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion Convolutional Recurrent Neu-
ral Network: Data-Driven Traffic Forecasting,” presented at the International
Conference on Learning Representations, Feb. 15, 2018. [Online]. Available:
https://openreview.net/forum?id=SJiHXGWAZ.

[13] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using Real
NVP,” Aug. 17, 2016. [Online]. Available: https://openreview.net/forum?
id=SyPNSAW5.

[14] P. Kirichenko, P. Izmailov, and A. G. Wilson, “Why Normalizing Flows Fail to
Detect Out-of-Distribution Data,” in Advances in Neural Information Process-
ing Systems, vol. 33, Curran Associates, Inc., 2020, pp. 20 578–20589. [On-
line]. Available: https://proceedings.neurips.cc/paper/2020/hash/
ecb9fe2fbb99c31f567e9823e884dbec-Abstract.html.

[15] A. Ryzhikov, M. Borisyak, A. Ustyuzhanin, and D. Derkach, “NFAD: Fixing
anomaly detection using normalizing flows,” PeerJ Computer Science, vol. 7,
e757, Nov. 18, 2021, ISSN: 2376-5992. DOI: 10.7717/peerj-cs.757. [Online].
Available: https://peerj.com/articles/cs-757.

[16] L.-L. Chiu and S.-H. Lai, “Self-Supervised Normalizing Flows for Image
Anomaly Detection and Localization,” in 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), Jun. 2023,
pp. 2927–2936. DOI: 10.1109/CVPRW59228.2023.00294. [Online]. Available:
https://ieeexplore.ieee.org/document/10208652.

45

https://doi.org/10.1109/TBME.2016.2556425
https://doi.org/10.1109/TBME.2016.2556425
https://ieeexplore.ieee.org/document/7458827
https://ieeexplore.ieee.org/document/7458827
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://openreview.net/forum?id=k9bx1EfHI_-
https://openreview.net/forum?id=SJiHXGWAZ
https://openreview.net/forum?id=SyPNSAW5
https://openreview.net/forum?id=SyPNSAW5
https://proceedings.neurips.cc/paper/2020/hash/ecb9fe2fbb99c31f567e9823e884dbec-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/ecb9fe2fbb99c31f567e9823e884dbec-Abstract.html
https://doi.org/10.7717/peerj-cs.757
https://peerj.com/articles/cs-757
https://doi.org/10.1109/CVPRW59228.2023.00294
https://ieeexplore.ieee.org/document/10208652

[17] D. Wang, H.-W. Wang, K.-F. Lu, Z.-R. Peng, and J. Zhao, “Regional Prediction
of Ozone and Fine Particulate Matter Using Diffusion Convolutional Recur-
rent Neural Network,” International Journal of Environmental Research and
Public Health, vol. 19, no. 7, p. 3988, Mar. 27, 2022, ISSN: 1660-4601. DOI:
10.3390/ijerph19073988. PMID: 35409671.

[18] P. Khosla, P. Teterwak, C. Wang, et al., “Supervised Contrastive Learn-
ing,” in Advances in Neural Information Processing Systems, vol. 33,
Curran Associates, Inc., 2020, pp. 18 661–18 673. [Online]. Available:
https : / / proceedings . neurips . cc / paper / 2020 / hash /
d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html.

[19] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, and S. Belongie, “Class-Balanced Loss Based
on Effective Number of Samples,” in 2019 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), Jun. 2019, pp. 9260–9269. DOI:
10.1109/CVPR.2019.00949. [Online]. Available: https://ieeexplore.
ieee.org/document/8953804.

[20] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense
Object Detection,” IEEE Transactions on Pattern Analysis andMachine Intelli-
gence, vol. 42, no. 2, pp. 318–327, Feb. 2020, ISSN: 1939-3539. DOI: 10.1109/
TPAMI.2018.2858826. [Online]. Available: https://ieeexplore.ieee.org/
document/8417976.

46

https://doi.org/10.3390/ijerph19073988
http://www.ncbi.nlm.nih.gov/pubmed/35409671
https://proceedings.neurips.cc/paper/2020/hash/d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d89a66c7c80a29b1bdbab0f2a1a94af8-Abstract.html
https://doi.org/10.1109/CVPR.2019.00949
https://ieeexplore.ieee.org/document/8953804
https://ieeexplore.ieee.org/document/8953804
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/TPAMI.2018.2858826
https://ieeexplore.ieee.org/document/8417976
https://ieeexplore.ieee.org/document/8417976

A Python Implementation Details

A.1 Data Processing and Feature Extraction

A.1.1 Db-4 Wavelet Packet Transform PyTorch implementation

import torch
import numpy as np
import math
from typing import Tuple, Union

def db4_dwt(x: Union[torch.Tensor, np.ndarray]) -> Tuple[torch.Tensor, torch.Tensor]:
"""
Computes the Daubechies 4 wavelet transform of the input.

Args:
x: A PyTorch tensor or NumPy array with shape (num_ch, num_samples)

Returns:
A tuple containing the approximation and detail coefficients.
"""
if x.dim() != 2:

raise ValueError("Input must have shape (num_ch, num_samples)")

device = x.device
sqrt2 = math.sqrt(2)
sqrt3 = math.sqrt(3)
h0 = (1 + sqrt3) / (4 * sqrt2)
h1 = (3 + sqrt3) / (4 * sqrt2)
h2 = (3 - sqrt3) / (4 * sqrt2)
h3 = (1 - sqrt3) / (4 * sqrt2)
low_filter = torch.tensor([h0, h1, h2, h3], dtype=x.dtype, device=device).view(1, 1, -1)
high_filter = torch.tensor([h3, -h2, h1, -h0], dtype=x.dtype, device=device).view(1, 1, -1)

unsqueezed = False
if x.shape[0] == 1:

x = x.unsqueeze(1)
unsqueezed = True

else:
x = x.unsqueeze(1)

try:
approx = torch.nn.functional.conv1d(x, low_filter, stride=2)
detail = torch.nn.functional.conv1d(x, high_filter, stride=2)

except Exception as e:
raise RuntimeError("Error during convolution") from e

approx = approx.squeeze(1)

47

detail = detail.squeeze(1)

if unsqueezed:
approx = approx.squeeze(0)
detail = detail.squeeze(0)

return approx, detail

def _wpt_recursive(x: torch.Tensor, level: int) -> list:
if level <= 0:

return [x]
else:

approx, detail = db4_dwt(x)
return _wpt_recursive(approx, level - 1) + _wpt_recursive(detail, level - 1)

def db4_wpt(x: Union[torch.Tensor, np.ndarray], level: int) -> torch.Tensor:
"""
Computes the wavelet packet transform of the input up to the specified level.

Args:
x: A PyTorch tensor or NumPy array with shape (num_ch, num_samples)
level: The level of the wavelet packet transform

Returns:
A PyTorch tensor containing the concatenated leaves of the wavelet packet tree.
"""
x = torch.as_tensor(x)
if x.dim() != 2:

raise ValueError("Input must have shape (num_ch, num_samples)")
if level < 0:

raise ValueError("Level must be a non-negative integer")

leaves = _wpt_recursive(x, level)
output = torch.cat(leaves, dim=-1)
return output

A.1.2 HUP+CHUL Dataset interface
from pyedflib import highlevel
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
from scipy import signal
import pickle
import os
import glob
import csv
from itertools import accumulate
from bisect import bisect_right
import numpy as np
import torch
from wavelets import db4_wpt
import math

class HUP_CHUL_Dataset(Dataset):
def __init__(self, hup_path, chul_path, patient_ids, save_dir, clip_time, wpt_level, overlap_rate=0.0, mode="train",

relative_noise_std_factor=0.0, channel_dropout_rate=0.0):↪→

48

"""
Args:

hup_path (str): Path to HUP dataset.
chul_path (str): Path to CHUL dataset.
patient_ids (list): List of patient IDs to include.
save_dir (str): Directory to save/load preprocessed .pkl files.
clip_time (float): Duration of each clip in seconds.
wpt_level (int): Level for Wavelet Packet Transform.
overlap_rate (float): Fraction of overlap (0.0 <= overlap_rate < 1.0).
mode (str): Dataset mode ('train', 'eval', 'test'). Augmentations applied only in 'train'.
relative_noise_std_factor (float): Relative standard deviation of gaussian noise added to raw signal
channel_dropout_rate (float): Probability of zeroing out a channel (train mode only).

"""
self.NOTCH_Q = 40.0
self.FS_NEW = 256.0
self.CLIP_SIZE = int(clip_time * self.FS_NEW)
self.WPT_LEVEL = wpt_level
self.save_dir = save_dir

--- Mode and Augmentation Params ---
if mode not in ['train', 'eval', 'test']:

raise ValueError("mode must be 'train', 'eval', or 'test'")
self.mode = mode
self.relative_noise_std_factor = relative_noise_std_factor if self.mode == 'train' else 0.0
self.channel_dropout_rate = channel_dropout_rate if self.mode == 'train' else 0.0
if not (0.0 <= self.channel_dropout_rate < 1.0):

raise ValueError("channel_dropout_rate must be between 0.0 (inclusive) and 1.0 (exclusive)")
--- End Mode/Augmentation ---

if not (0.0 <= overlap_rate < 1.0):
raise ValueError("overlap_rate must be between 0.0 (inclusive) and 1.0 (exclusive)")

self.overlap_rate = overlap_rate
self.stride = int(self.CLIP_SIZE * (1.0 - self.overlap_rate))

self.edf_paths = self._get_edf_paths(hup_path, chul_path, patient_ids)
self.sigs = [self._get_sig(edf_path) for edf_path in self.edf_paths]
self.num_clips_cumulative = self._get_num_clips_cumulative()

def _get_edf_paths(self, hup_path, chul_path, patient_ids):
def get_edf_paths(patient_id):

base_path = hup_path if "HUP" in patient_id else chul_path
sub_path = "ses-presurgery" if "HUP" in patient_id else ""
search_path = os.path.join(base_path, patient_id, sub_path, "ieeg", "*.edf")
return sorted(glob.glob(search_path))

return [path for patient_id in patient_ids for path in get_edf_paths(patient_id)]

def _get_sig(self, edf_path):
returns tuple (patient_id,sig,ch,soz) after filtering and resampling
patient_id = os.path.basename(edf_path).split("_")[0]
pkl_fn_base = os.path.basename(edf_path).split(".")[0]
pkl_fn = f"{pkl_fn_base}_fs{int(self.FS_NEW)}_notch{int(self.NOTCH_Q)}.pkl"
pkl_path = os.path.join(self.save_dir, patient_id, pkl_fn)

if os.path.exists(pkl_path):
try:

with open(pkl_path, "rb") as fh:
sig, ch, soz = pickle.load(fh)

except Exception as e:
os.remove(pkl_path)
sig, ch, soz = self._process_edf(edf_path, pkl_path)

else:
sig, ch, soz = self._process_edf(edf_path, pkl_path)

return patient_id, sig, ch, soz

def _process_edf(self, edf_path, pkl_path):
"""Helper function to process a single EDF file."""
ch, soz, sig_mask = [], [], []
try:

signals, signal_headers, header = highlevel.read_edf(edf_path)
if signals is None or (isinstance(signals, np.ndarray) and signals.size == 0) or not signal_headers:

print(f"Warning: No valid signals data or headers read from {edf_path}. Skipping.")
Return empty tensors/lists to avoid downstream errors
return torch.empty((0,0), dtype=torch.float32), [], torch.empty((0,), dtype=torch.bool)

fs_read = signal_headers[0]["sample_frequency"]
channels_tsv = "_".join(edf_path.split("_")[:-1]) + "_channels.tsv"
if not os.path.exists(channels_tsv):

print(f"Warning: Channels TSV file not found: {channels_tsv}. Cannot determine SOZ/status for {edf_path}.
Skipping.")↪→

return torch.empty((0,0), dtype=torch.float32), [], torch.empty((0,), dtype=torch.bool)

49

with open(channels_tsv) as fh:
reader = csv.reader(fh, delimiter="\t")
column_names = next(reader)
Check for required column names robustly
required_cols = ["name", "status", "type"]
if "HUP" in edf_path: required_cols.append("status_description")
else: required_cols.append("soz_label")
if not all(col in column_names for col in required_cols):

print(f"Warning: Missing required columns in {channels_tsv} (needs {required_cols}). Skipping {edf_path}.")
return torch.empty((0,0), dtype=torch.float32), [], torch.empty((0,), dtype=torch.bool)

Get indices after validation
channel_name_idx = column_names.index("name")
status_idx = column_names.index("status")
signal_type_idx = column_names.index("type")
status_description_idx = column_names.index("status_description") if "HUP" in edf_path else -1
soz_label_idx = column_names.index("soz_label") if "HUP" not in edf_path else -1

for row in reader:
channel_name = row[channel_name_idx]
status = row[status_idx]
signal_type = row[signal_type_idx]
is_good_seeg = (status == "good" and signal_type == "SEEG")

if is_good_seeg:
sig_mask.append(True)
ch.append(channel_name)
is_soz = False
if "HUP" in edf_path:

status_description = row[status_description_idx]
is_soz = "soz" in status_description.lower() # Case-insensitive check

else:
soz_label = row[soz_label_idx]
is_soz = soz_label.lower() == "soz" # Case-insensitive check

soz.append(is_soz)
else:

sig_mask.append(False)

if not any(sig_mask): # Check if any good SEEG channels were found
print(f"Warning: No 'good' SEEG channels found in {edf_path} according to {channels_tsv}. Skipping.")
return torch.empty((0,0), dtype=torch.float32), [], torch.empty((0,), dtype=torch.bool)

soz = torch.Tensor(soz).to(torch.bool)
sig = signals[sig_mask]

Filter only if signal has non-zero length
if sig.shape[1] > 0:

NOTCH_FREQ = 60.0 if "HUP" in edf_path else 50.0
sos_notch = signal.tf2sos(*signal.iirnotch(NOTCH_FREQ, self.NOTCH_Q, fs_read))
sig = signal.sosfiltfilt(sos_notch, sig, axis=-1)

Resample only if necessary and signal has length
if not np.isclose(self.FS_NEW, fs_read):

num_samples_new = int(np.round(sig.shape[1] * self.FS_NEW / fs_read))
if num_samples_new > 0:

sig = signal.resample(sig, num_samples_new, axis=-1)
else:

sig = np.empty((sig.shape[0], 0)) # Handle case where resampling results in 0 samples

sig=torch.from_numpy(sig.copy()).to(torch.float32)

Save the processed data
os.makedirs(os.path.dirname(pkl_path), exist_ok=True)
with open(pkl_path, "wb") as fh:

pickle.dump((sig, ch, soz), fh)

return sig, ch, soz

except Exception as e:
print(f"!!! Critical Error processing {edf_path}: {e}")
print(f"Skipping this file.")
Return empty data to prevent crashes later
return torch.empty((0,0), dtype=torch.float32), [], torch.empty((0,), dtype=torch.bool)

def _calculate_num_clips(self, signal_length):
"""Calculates the number of extractable clips from a signal of given length."""
if signal_length < self.CLIP_SIZE:

return 0
else:

The index of the last possible clip start position (0-based)
last_possible_start_index = signal_length - self.CLIP_SIZE

50

Number of clips = number of valid start positions / stride, rounded down, plus 1
num_clips = math.floor(last_possible_start_index / self.stride) + 1
return num_clips

def _get_num_clips_cumulative(self):
"""Calculates cumulative clip counts using the overlap/stride logic."""
num_clips_per_file = []
for _, sig, _, _ in self.sigs:

if isinstance(sig, torch.Tensor) and sig.ndim >= 2:
signal_length = sig.shape[1]
num_clips = self._calculate_num_clips(signal_length)
num_clips_per_file.append(num_clips)

else:
print(f"Warning: Invalid signal data encountered during clip calculation. Shape: {getattr(sig, 'shape', 'N/A')}")
num_clips_per_file.append(0)

return list(accumulate(num_clips_per_file))

def __len__(self):
"""Returns the total number of clips across all files, considering overlap."""
if not self.num_clips_cumulative: return 0
return self.num_clips_cumulative[-1]

def __getitem__(self, global_idx):
if global_idx >= self.__len__() or global_idx < 0:

raise IndexError(f"Index {global_idx} out of range for dataset length {self.__len__()}")

sig_idx = bisect_right(self.num_clips_cumulative, global_idx)
local_idx = global_idx if sig_idx == 0 else global_idx - self.num_clips_cumulative[sig_idx - 1]
patient_id, sig, ch, soz = self.sigs[sig_idx]
start_sample = local_idx * self.stride
end_sample = start_sample + self.CLIP_SIZE

if end_sample > sig.shape[1]:
end_sample = sig.shape[1]
start_sample = end_sample - self.CLIP_SIZE
if start_sample < 0: start_sample = 0

clip = sig[:, start_sample:end_sample]
if not isinstance(clip, torch.Tensor):

clip = torch.from_numpy(clip.copy()).to(torch.float32)
else:

clip = clip.clone().detach().to(torch.float32)

--- Apply Augmentations only in 'train' mode ---
if self.mode == 'train':

1. Adaptive Gaussian Noise
if self.relative_noise_std_factor > 0 and clip.numel() > 0: # Check clip not empty

Calculate std deviation FOR EACH CHANNEL within the clip
Add epsilon to prevent division by zero or issues with flat channels
clip_std_per_channel = torch.std(clip, dim=1, keepdim=True, unbiased=False) + 1e-6

Calculate noise level per channel based on the factor
noise_level_per_channel = clip_std_per_channel * self.relative_noise_std_factor

Generate noise and scale it per channel
noise = torch.randn_like(clip) * noise_level_per_channel
clip = clip + noise

2. Channel Dropout
num_channels = clip.shape[0]
if self.channel_dropout_rate > 0 and num_channels > 0:

keep_mask = (torch.rand(num_channels, device=clip.device) > self.channel_dropout_rate).unsqueeze(1)
clip = clip * keep_mask.float()

--- End Augmentations ---

wpt = db4_wpt(clip, self.WPT_LEVEL)
return patient_id, wpt, ch, soz

def collate_fn(batch):
patient_id,wpt,ch,soz = zip(*batch)
padded_wpt = pad_sequence(wpt, batch_first=True, padding_value=0.)
padded_soz = pad_sequence(soz, batch_first=True, padding_value=0.)
key_padding_mask = (padded_wpt == 0.).float().sum(dim=-1) > 0
max_channels = max(len(channels) for channels in ch)
padded_ch = [channels+["pad_ch"]*(max_channels-len(channels)) for channels in ch]
patient_id = list(patient_id)
return patient_id,padded_wpt,padded_ch,padded_soz,key_padding_mask

51

A.2 Core Model and Training Framework

A.2.1 Model architecture
import torch
import torch.nn as nn
import torch.nn.functional as F

class TransformerEncoderLayer(nn.Module):
"""
A single transformer encoder layer with pre-attention layer normalization.
"""

def __init__(self, d_model, num_heads, dim_feedforward=2048, dropout=0.1):
"""
Args:

d_model (int): The number of expected features in the input (embedding dimension).
num_heads (int): The number of heads in the multi-head self-attention.
dim_feedforward (int): The dimension of the feed-forward network model.
dropout (float): Dropout value.

"""
super(TransformerEncoderLayer, self).__init__()

self.self_attn = nn.MultiheadAttention(d_model, num_heads, dropout=dropout, batch_first=False)

self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)

self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)

self.linear1 = nn.Linear(d_model, dim_feedforward)
self.linear2 = nn.Linear(dim_feedforward, d_model)

def forward(self, src, src_mask=None, src_key_padding_mask=None):
"""
Args:

src (Tensor): Input tensor of shape (sequence_length, batch_size, d_model).
src_mask (Tensor, optional): Attention mask for sequence masking (size: seq_len x seq_len).

- Used to prevent positions from attending to future tokens (for causal masking) or to mask specific tokens.
src_key_padding_mask (Tensor, optional): Padding mask for input tokens (size: batch_size x seq_len).

- Used to mask out padding tokens so they do not contribute to self-attention.

Returns:
Tensor: Output tensor of shape (sequence_length, batch_size, d_model).

"""
Pre-attention layer normalization.
src_norm = self.norm1(src)
Apply multi-head self-attention. Note that nn.MultiheadAttention expects input shape:
(sequence_length, batch_size, embedding_dim)
attn_output, _ = self.self_attn(

src_norm, src_norm, src_norm,
attn_mask=src_mask, # seq_len x seq_len mask
key_padding_mask=src_key_padding_mask # batch_size x seq_len mask

)

Residual connection & dropout
src = src + self.dropout1(attn_output)

Pre-FFN layer normalization
src_norm = self.norm2(src)

Feed-forward network with GELU activation
ffn_output = self.linear2(nn.functional.gelu(self.linear1(src_norm)))

Residual connection & dropout
src = src + self.dropout2(ffn_output)

return src

class TransformerEncoder(nn.Module):
"""
Transformer Encoder consisting of a stack of encoder layers with masking support.
"""

def __init__(self, d_model, num_heads, num_layers, dim_feedforward=2048, dropout=0.1):
"""
Args:

d_model (int): Embedding dimension.
num_heads (int): Number of attention heads.
num_layers (int): Number of encoder layers.
dim_feedforward (int): Dimension of the feed-forward network.

52

dropout (float): Dropout rate.
"""
super(TransformerEncoder, self).__init__()
self.layers = nn.ModuleList([

TransformerEncoderLayer(d_model, num_heads, dim_feedforward, dropout)
for _ in range(num_layers)

])
self.norm = nn.LayerNorm(d_model) # Final Layer Normalization

def forward(self, src, mask=None, src_key_padding_mask=None):
"""
Args:

src (Tensor): Input tensor of shape (sequence_length, batch_size, d_model).
mask (Tensor, optional): Attention mask.
src_key_padding_mask (Tensor, optional): Padding mask.

Returns:
Tensor: Output tensor of shape (sequence_length, batch_size, d_model).

"""
output = src
Iterate through the encoder layers, passing the masks as well
for layer in self.layers:

output = layer(output, src_mask=mask, src_key_padding_mask=src_key_padding_mask)
output = self.norm(output)
return output

class TransformerEncoderWithProjection(nn.Module):
"""
Adds a projection layer before the transformer encoder to reduce token size and support masking.
"""

def __init__(self, d_features, d_model, num_heads, num_layers, dim_feedforward=2048, dropout=0.1):
"""
Args:

d_features (int): Input features dimension.
d_model (int): Embedding dimension.
num_heads (int): Number of attention heads.
num_layers (int): Number of encoder layers.
dim_feedforward (int): Dimension of the feed-forward network.
dropout (float): Dropout rate.

"""
super().__init__()
self.FeatureProjection = nn.Linear(d_features, d_model) #Projection layer
self.TransformerEncoder = TransformerEncoder(d_model, num_heads, num_layers, dim_feedforward, dropout)

def forward(self, input_seq, mask=None, src_key_padding_mask=None):
"""
Args:

input_seq (Tensor): Input tensor of shape (batch_size, seq_len, d_features).
mask (Tensor, optional): Attention mask.
src_key_padding_mask (Tensor, optional): Padding mask.

Returns:
Tensor: Output tensor of shape (sequence_length, batch_size, d_model).

"""

Transpose input to match expected Transformer input shape
(batch_size, seq_len, d_feature) -> (seq_len, batch_size, d_feature)
input_seq = input_seq.permute(1, 0, 2)

Project input to the model's embedding dimension
#(seq_len, batch_size, d_model)
src = self.FeatureProjection(input_seq)

Apply Transformer Encoder with proper masking
#(seq_len, batch_size, d_model)
output = self.TransformerEncoder(src, mask=mask, src_key_padding_mask=src_key_padding_mask)

return output

class SOZDetectionPretraining(nn.Module):
"""
TF Features => Linear => Transformer Encoder => Normalize => MLP Head => output
<= Contrastive objective on d_hidden dimensional representations from MLP Head
"""
def __init__(

self,
d_features,
d_model,
d_hidden, # Dimension of the output from the MLP projection head
num_heads,
num_layers,
dim_feedforward=2048,
dropout=0.1,
mlp_intermediate_factor=1 # Factor to determine MLP intermediate dim (d_model * factor)

53

Or you could pass a specific dim directly
):

"""
Args:

d_features (int): Input features dimension.
d_model (int): Embedding dimension of the Transformer Encoder.
d_hidden (int): Output dimension of the MLP projection head.
num_heads (int): Number of attention heads in Transformer.
num_layers (int): Number of encoder layers in Transformer.
dim_feedforward (int): Dimension of the feed-forward network in Transformer layers.
dropout (float): Dropout rate used in Transformer.
mlp_intermediate_factor (int): Determines intermediate dimension of MLP

(d_model * mlp_intermediate_factor). Common is 1 or 2.
"""
super().__init__()
self.FeatureProjection = nn.Linear(d_features, d_model)
self.TransformerEncoder = TransformerEncoder(

d_model, num_heads, num_layers, dim_feedforward, dropout
)

--- Define the MLP Projection Head ---
mlp_intermediate_dim = int(d_model * mlp_intermediate_factor)
self.projection_head = nn.Sequential(

nn.Linear(d_model, mlp_intermediate_dim),
nn.ReLU(),
nn.Linear(mlp_intermediate_dim, d_hidden)
Note: No activation/normalization after the final linear layer is common
in contrastive projection heads (e.g., SimCLR).

)
--- End MLP Definition ---

def forward(self, input_seq, mask=None, src_key_padding_mask=None):
"""
Args:

input_seq (Tensor): Input tensor of shape (batch_size, seq_len, d_features).
mask (Tensor, optional): Attention mask for transformer.
src_key_padding_mask (Tensor, optional): Padding mask for transformer.

Returns:
Tensor: Output tensor from MLP head of shape (sequence_length, batch_size, d_hidden).

"""
Permute to (seq_len, batch_size, d_features)
input_seq = input_seq.permute(1, 0, 2)

Project features to d_model
src = self.FeatureProjection(input_seq) # [seq_len, batch_size, d_model]

Pass through Transformer Encoder (includes final LayerNorm)
src = self.TransformerEncoder(

src, mask=mask, src_key_padding_mask=src_key_padding_mask
) # [seq_len, batch_size, d_model]

Apply the MLP projection head
projected_output = self.projection_head(src) # [seq_len, batch_size, d_hidden]

return projected_output

class SOZDetectionFinetuning(nn.Module):
"""
Fine-tuning model: Takes pre-trained backbone and adds a linear head.
TF Features => Linear => Transformer Encoder => Linear => **Unbounded scores**
"""
def __init__(self, pretrained): # Add type hint: e.g., pretrained: SOZDetectionPretraining

super().__init__()
self.pretrained = pretrained
d_model = pretrained.FeatureProjection.out_features # Or however d_model is stored/accessed
self.classification_head = nn.Linear(d_model, 1) # Renamed for clarity

def forward(self, input_seq, mask=None, src_key_padding_mask=None):
input_seq = input_seq.permute(1, 0, 2)
Pass through pre-trained backbone
features = self.pretrained.FeatureProjection(input_seq)
features = self.pretrained.TransformerEncoder(

features, mask=mask, src_key_padding_mask=src_key_padding_mask
) # Output shape: [seq_len, batch_size, d_model]

Apply classification head directly to backbone features
logits = self.classification_head(features) # Output shape: [seq_len, batch_size, 1]
return logits

class SOZDetection(nn.Module):
"""
TF Features => Linear => Transformer Encoder => Normalize => Linear => **Probability estimates**

54

<= Model to use in prediction, that should inherit from the two previous models.
"""
def __init__(self, model):

super().__init__()
self.model = model #model is SOZDetectionFinetuning
self.sig = nn.Sigmoid()

def forward(self, input_seq, mask=None, src_key_padding_mask=None):
"""
Args:

input_seq (Tensor): Input tensor of shape (batch_size, seq_len, d_features).
mask (Tensor, optional): Attention mask.
src_key_padding_mask (Tensor, optional): Padding mask.

Returns:
prob_scores: Output tensor of shape (sequence_length, batch_size, 1).
probability scores between 0 and 1 for the SOZ

"""
unbounded_scores=self.model(input_seq, mask=mask, src_key_padding_mask=src_key_padding_mask) #(seq_len, batch_size, 1)
prob_scores=self.sig(unbounded_scores) #(seq_len, batch_size, 1)
return prob_scores

A.2.2 Loss functions
import torch
import torch.nn.functional as F
from torch.nn.functional import binary_cross_entropy_with_logits, sigmoid

def contrastive_loss(h, padded_soz, src_key_padding_mask, mplus=0.9, mminus=-0.9):
"""
A spatial contrastive loss for SOZ detection
Args:

h ([max_seq_len, batch_size, d_model]): output representation
padded_soz ([batch_size, max_seq_len]): Multi-hot encoded epileptogenic zone label
src_key_padding_mask ([batch_size, max_seq_len]): padding mask (False for valid tokens)

Returns:
loss: contrastive loss that will cluster the latent space according to the SOZ

"""
loss=0.0
valid_lengths=(~src_key_padding_mask).sum(dim=1)
batch_size=len(valid_lengths)
for i,valid_length in enumerate(valid_lengths):

h_norm = torch.nn.functional.normalize(h[:valid_length,i,:], p=2, dim=1)
S = h_norm@h_norm.T

ez_multihot=padded_soz[i,:valid_length]
remove_diag=~torch.eye(len(ez_multihot), dtype=torch.bool, device=ez_multihot.device)
#both_not_ez=~ez_multihot.unsqueeze(0) & ~ez_multihot.unsqueeze(1) & remove_diag
both_ez=ez_multihot.unsqueeze(0) & ez_multihot.unsqueeze(1) & remove_diag
one_in_one_out=(ez_multihot.unsqueeze(0) & ~ez_multihot.unsqueeze(1)) | (~ez_multihot.unsqueeze(0) &

ez_multihot.unsqueeze(1))↪→

#coords=padded_coords[i,:valid_length]
#D_sq = ((coords.unsqueeze(0) - coords.unsqueeze(1))**2).sum(dim=2)
#sigma=torch.std(torch.sqrt(D_sq))
#D_kernel = torch.exp(-D_sq / (sigma**2))
both_ez_terms=both_ez*torch.nn.functional.relu(mplus-S)*(1/(both_ez.sum()))
#both_not_ez_terms=both_not_ez*torch.nn.functional.relu(mplus-S)*(1/(both_not_ez.sum()))
one_in_one_out_terms=one_in_one_out*torch.nn.functional.relu(S-mminus)*(1/(one_in_one_out.sum()))
loss_terms=one_in_one_out_terms+both_ez_terms
loss+=torch.mean(loss_terms)

return loss/batch_size

def cb_bce_loss_with_logits(
unbounded_scores, # Shape: [max_seq_len, batch_size, 1]
padded_soz, # Shape: [batch_size, max_seq_len] (True/False or 1/0)
src_key_padding_mask, # Shape: [batch_size, max_seq_len] (True for padding)
beta=0.999, # Class balancing hyperparameter
epsilon=1e-8 # Numerical stability
):
"""
Class-Balanced Binary Cross Entropy Loss With Logits.

Applies BCE loss with dynamic weights calculated per sample based on the
effective number of positive (SOZ) and negative (non-SOZ) examples
within that sample, using the class-balancing formula.

Args:
unbounded_scores ([max_seq_len, batch_size, 1]): Raw output scores from the model (before sigmoid).
padded_soz ([batch_size, max_seq_len]): Boolean or 0/1 tensor indicating SOZ status.

55

src_key_padding_mask ([batch_size, max_seq_len]): Padding mask (True for padding, False for valid tokens).
beta (float): Hyperparameter for class balancing weight calculation (e.g., 0.9, 0.99, 0.999).
epsilon (float): Small value for numerical stability.

Returns:
torch.Tensor: The final computed class-balanced loss scalar, averaged over all valid channels in the batch.

"""
total_loss = 0.0
total_valid_channels = 0.0 # Normalizing by total valid channels across batch

valid_lengths = (~src_key_padding_mask).sum(dim=1)
batch_size = len(valid_lengths)

Ensure padded_soz is float for BCE calculation later
padded_soz_float = padded_soz.float()

for i, valid_length in enumerate(valid_lengths):
if valid_length == 0: # Skip samples with no valid channels

continue

Extract valid scores and SOZ labels for this sample
scores_valid = unbounded_scores[:valid_length, i, :].squeeze(-1) # Shape: [valid_length]
soz_valid = padded_soz_float[i, :valid_length] # Shape: [valid_length]
soz_valid_bool = padded_soz[i, :valid_length].bool() # Shape: [valid_length], boolean for counting

--- Calculate Class Counts for this specific sample ---
N_soz = soz_valid_bool.sum().float() # Ensure float for power calculation
N_non_soz = valid_length.float() - N_soz # Ensure float

--- Calculate Class-Balanced Weights for this sample ---
if N_soz > 0:

weight_soz = (1.0 - beta) / (1.0 - torch.pow(beta, N_soz) + epsilon)
else:

weight_soz = 0 # Assign 0 weight if no positive samples exist in this instance

if N_non_soz > 0:
weight_non_soz = (1.0 - beta) / (1.0 - torch.pow(beta, N_non_soz) + epsilon)

else:
weight_non_soz = 0 # Assign 0 weight if no negative samples exist

--- Create per-channel weight tensor ---
Assign weight_soz to positive samples, weight_non_soz to negative samples
sample_weights = torch.where(soz_valid_bool, weight_soz, weight_non_soz) # Shape: [valid_length]

--- Calculate Weighted BCE Loss for this sample ---
Apply weights element-wise, then sum the loss for this sample
sample_loss = F.binary_cross_entropy_with_logits(

scores_valid,
soz_valid,
weight=sample_weights, # Apply per-channel weights
reduction='sum' # Sum the loss across channels for this sample

)

total_loss += sample_loss
total_valid_channels += valid_length.float() # Accumulate total valid channels processed

Average the total loss over all valid channels processed in the batch
final_loss = total_loss / (total_valid_channels + epsilon)

return final_loss

def focal_cb_bce_loss_with_logits(
unbounded_scores, # Shape: [max_seq_len, batch_size, 1]
padded_soz, # Shape: [batch_size, max_seq_len] (True/False or 1/0)
src_key_padding_mask, # Shape: [batch_size, max_seq_len] (True for padding)
beta=0.999, # Class balancing hyperparameter
gamma=2.0, # Focal loss focusing parameter (gamma=0 recovers non-focal version)
epsilon=1e-8 # Numerical stability
):
"""
Focal Class-Balanced Binary Cross Entropy Loss With Logits.

Combines Focal Loss modulation (down-weights easy examples) with
Class-Balanced weighting (based on effective number of samples per class
within each sample).

Args:
unbounded_scores ([max_seq_len, batch_size, 1]): Raw output scores from the model (before sigmoid).
padded_soz ([batch_size, max_seq_len]): Boolean or 0/1 tensor indicating SOZ status.
src_key_padding_mask ([batch_size, max_seq_len]): Padding mask (True for padding, False for valid tokens).
beta (float): Hyperparameter for class balancing weight calculation.
gamma (float): Focusing parameter for Focal loss. gamma=0 disables the focal component.

56

epsilon (float): Small value for numerical stability.

Returns:
torch.Tensor: The final computed focal class-balanced loss scalar, averaged over valid channels.

"""
total_loss = 0.0
total_valid_channels = 0.0 # Normalizing by total valid channels across batch

valid_lengths = (~src_key_padding_mask).sum(dim=1)
batch_size = len(valid_lengths)

padded_soz_float = padded_soz.float() # Ensure float for BCE targets

for i, valid_length in enumerate(valid_lengths):
if valid_length == 0: continue

scores_valid = unbounded_scores[:valid_length, i, :].squeeze(-1) # [valid_length]
soz_valid = padded_soz_float[i, :valid_length] # [valid_length] (float)
soz_valid_bool = padded_soz[i, :valid_length].bool() # [valid_length] (bool)

--- Calculate Class Counts ---
N_soz = soz_valid_bool.sum().float()
N_non_soz = valid_length.float() - N_soz

--- Calculate Class-Balanced Weights ---
if N_soz > 0: weight_soz = (1.0 - beta) / (1.0 - torch.pow(beta, N_soz) + epsilon)
else: weight_soz = 0
if N_non_soz > 0: weight_non_soz = (1.0 - beta) / (1.0 - torch.pow(beta, N_non_soz) + epsilon)
else: weight_non_soz = 0
cb_weights = torch.where(soz_valid_bool, weight_soz, weight_non_soz) # [valid_length]

--- Calculate Standard Weighted BCE (Element-wise) ---
Need element-wise loss before applying focal modulation
bce_loss_elements = F.binary_cross_entropy_with_logits(

scores_valid,
soz_valid,
reduction='none' # Get per-element loss

)

--- Calculate Focal Modulation Factor ---
if gamma > 0:

Calculate probabilities p = sigmoid(scores)
probs = torch.sigmoid(scores_valid)
Calculate p_t (probability of the true class)
p_t = torch.where(soz_valid_bool, probs, 1.0 - probs)
Calculate focal weight: (1 - p_t)^gamma
Add epsilon inside pow for stability? Maybe not needed if p_t is bound [0,1]
focal_modulator = torch.pow(1.0 - p_t, gamma)

else:
If gamma is 0, focal modulator is 1 (no effect)
focal_modulator = torch.ones_like(bce_loss_elements)

--- Combine Losses and Weights ---
Final loss per element = focal_modulator * class_balance_weight * bce_loss
combined_loss_elements = focal_modulator * cb_weights * bce_loss_elements

Sum the loss for this sample
sample_loss = combined_loss_elements.sum()

total_loss += sample_loss
total_valid_channels += valid_length.float()

Average the total loss over all valid channels processed in the batch
final_loss = total_loss / (total_valid_channels + epsilon)

return final_loss

def get_precision_micro(unbounded_scores, padded_soz, src_key_padding_mask, threshold):
"""Calculates precision by aggregating counts across the batch."""
total_tp = 0.0
total_predicted_p = 0.0

valid_lengths = (~src_key_padding_mask).sum(dim=1)
batch_size = len(valid_lengths) # Not directly needed for micro average

for batch_idx, valid_length in enumerate(valid_lengths):
if valid_length == 0: continue
unbounded_scores_valid = unbounded_scores[:valid_length, batch_idx, :].squeeze(-1) # Use -1 for robustness
soz_preds = (F.sigmoid(unbounded_scores_valid) > threshold).float()
soz_valid = padded_soz[batch_idx, :valid_length].float()

total_tp += ((soz_preds == 1.) & (soz_valid == 1.)).float().sum().item()
total_predicted_p += soz_preds.sum().item()

57

if total_predicted_p == 0.:
Handle case where no positive predictions were made in the entire batch
Can return 0.0, 1.0 (if no true positives either), or NaN depending on preference
return 0.0

precision = total_tp / total_predicted_p
return precision

def get_recall_micro(unbounded_scores, padded_soz, src_key_padding_mask, threshold):
"""Calculates recall by aggregating counts across the batch."""
total_tp = 0.0
total_true_p = 0.0

valid_lengths = (~src_key_padding_mask).sum(dim=1)

for batch_idx, valid_length in enumerate(valid_lengths):
if valid_length == 0: continue
unbounded_scores_valid = unbounded_scores[:valid_length, batch_idx, :].squeeze(-1)
soz_preds = (F.sigmoid(unbounded_scores_valid) > threshold).float()
soz_valid = padded_soz[batch_idx, :valid_length].float()

total_tp += ((soz_preds == 1.) & (soz_valid == 1.)).float().sum().item()
total_true_p += soz_valid.sum().item()

if total_true_p == 0.:
Handle case where no true positives exist in the entire batch
Can return 0.0, 1.0 (if no TPs either), or NaN
return 1.0 if total_tp == 0 else 0.0 # Common convention: 1.0 if no positives to find and none found

recall = total_tp / total_true_p
return recall

def get_fpr_micro(unbounded_scores, padded_soz, src_key_padding_mask, threshold):
"""Calculates FPR by aggregating counts across the batch."""
total_fp = 0.0
total_true_n = 0.0

valid_lengths = (~src_key_padding_mask).sum(dim=1)

for batch_idx, valid_length in enumerate(valid_lengths):
if valid_length == 0: continue
unbounded_scores_valid = unbounded_scores[:valid_length, batch_idx, :].squeeze(-1)
soz_preds = (F.sigmoid(unbounded_scores_valid) > threshold).float()
soz_valid = padded_soz[batch_idx, :valid_length].float()

total_fp += ((soz_preds == 1.) & (soz_valid == 0.)).float().sum().item()
total_true_n += (soz_valid == 0.).float().sum().item() # Or valid_length - soz_valid.sum()

if total_true_n == 0.:
Handle case where no true negatives exist in the entire batch
return 0.0 # Common: if no negatives to misclassify, FPR is 0

fpr = total_fp / total_true_n
return fpr

def get_accuracy_micro(unbounded_scores, padded_soz, src_key_padding_mask, threshold):
"""Calculates accuracy by aggregating counts across the batch."""
total_correct_predictions = 0.0
total_valid_channels = 0.0

valid_lengths = (~src_key_padding_mask).sum(dim=1)

for batch_idx, valid_length in enumerate(valid_lengths):
if valid_length == 0: continue
unbounded_scores_valid = unbounded_scores[:valid_length, batch_idx, :].squeeze(-1)
soz_preds = (F.sigmoid(unbounded_scores_valid) > threshold).float()
soz_valid = padded_soz[batch_idx, :valid_length].float()

total_correct_predictions += (soz_preds == soz_valid).float().sum().item()
total_valid_channels += valid_length.item()

if total_valid_channels == 0.:
return 0.0

accuracy = total_correct_predictions / total_valid_channels
return accuracy

def supcon(h, padded_soz, src_key_padding_mask, tau=0.5, epsilon=1e-8):
"""
A spatial contrastive loss for SOZ detection based on Supcon (https://arxiv.org/pdf/2004.11362)
Args:

h ([max_seq_len, batch_size, d_model]): hidden representation
padded_soz ([batch_size, max_seq_len]): Multi-hot encoded SOZ label
src_key_padding_mask ([batch_size, max_seq_len]): padding mask (False for valid tokens)
tau: temperature parameter
epsilon: small value to ensure numerical stability

58

Returns:
loss: contrastive loss that will cluster the latent space according to the SOZ

"""
batch_loss = 0.0
valid_lengths = (~src_key_padding_mask).sum(dim=1)
batch_size = len(valid_lengths)

for batch_idx, num_chan in enumerate(valid_lengths):
h_pat = h[:num_chan, batch_idx, :]
sim_pat = h_pat @ h_pat.T / tau
soz_pat = padded_soz[batch_idx, :num_chan]

ignore_current = 1 - torch.eye(num_chan, device=h.device)
exp_sim = torch.exp(sim_pat)
denom = (exp_sim * ignore_current).sum(dim=1, keepdim=True) + epsilon
positives = (soz_pat.unsqueeze(0) == soz_pat.unsqueeze(1)) & ignore_current.bool()
positives = positives.float()
log_prob = torch.log(exp_sim / denom)
loss_terms = -(positives * log_prob).sum(dim=1) / (positives.sum(dim=1) + epsilon)
batch_loss += loss_terms.sum()

loss=batch_loss/batch_size
return loss

def weighted_supcon(h, padded_soz, src_key_padding_mask,
w_soz=9.0, w_non_soz=1.0,
tau=0.1, epsilon=1e-8):

"""
Weighted Supervised Contrastive loss based on anchor class frequency.

Args:
h ([max_seq_len, batch_size, d_model]): hidden representation
padded_soz ([batch_size, max_seq_len]): Multi-hot encoded SOZ label (1 for SOZ, 0 for non-SOZ)
src_key_padding_mask ([batch_size, max_seq_len]): padding mask (False for valid tokens)
w_soz: Weight for SOZ anchors.
w_non_soz: Weight for non-SOZ anchors.
tau: temperature parameter
epsilon: small value to ensure numerical stability

Returns:
loss: weighted contrastive loss

"""
batch_loss = 0.0
total_weighted_anchors = 0.0 # Keep track of total weight for normalization

valid_lengths = (~src_key_padding_mask).sum(dim=1)
batch_size = len(valid_lengths)

for batch_idx, num_chan in enumerate(valid_lengths):
if num_chan <= 1: # Need at least 2 channels

continue

h_pat = h[:num_chan, batch_idx, :] # Representations for this patient [num_chan, d_model]
soz_pat = padded_soz[batch_idx, :num_chan] # Labels for this patient [num_chan]

--- Check for edge cases ---
num_positives = soz_pat.sum()
if num_positives == 0 or num_positives == num_chan:

Skip if all channels are the same class (no contrast possible for SupCon)
Or handle differently if needed (e.g., add a small penalty?)
continue

--- End Edge Case Check ---

Normalize features (important for cosine similarity interpretation)
h_pat_norm = F.normalize(h_pat, p=2, dim=1)

Similarity matrix [num_chan, num_chan]
Using matrix multiplication for cosine similarity on normalized features
sim_pat_mat = h_pat_norm @ h_pat_norm.T / tau

--- Standard SupCon calculations ---
Mask for positives (same label, excluding self)
pos_mask = (soz_pat.unsqueeze(0) == soz_pat.unsqueeze(1)).float()
diag_mask = 1 - torch.eye(num_chan, device=h.device)
pos_mask = pos_mask * diag_mask # Exclude self-similarity

Numerator calculation (log prob for positive pairs)
Use log-sum-exp trick for numerical stability
log(exp(sim_ij / tau) / sum_k!=i(exp(sim_ik / tau))) = sim_ij/tau - log(sum_k!=i(exp(sim_ik/tau)))
log_sum_exp_sim = torch.logsumexp(sim_pat_mat * diag_mask, dim=1, keepdim=True)
log_prob = sim_pat_mat - log_sum_exp_sim

SupCon loss per anchor (before weighting)
Sum log_prob over positive pairs for each anchor, normalize by num positive pairs

59

loss_terms_unweighted = -(pos_mask * log_prob).sum(dim=1) / (pos_mask.sum(dim=1) + epsilon)

--- Anchor Weighting ---
Create weights based on anchor label
anchor_weights = torch.where(soz_pat == 1, w_soz, w_non_soz)

Apply weights to the loss terms
weighted_loss_terms = loss_terms_unweighted * anchor_weights

Accumulate weighted loss and the total weight applied in this sample
batch_loss += weighted_loss_terms.sum()
total_weighted_anchors += anchor_weights.sum() # Sum of weights for anchors in this sample

Normalize by the total weight of anchors processed across the batch
loss = batch_loss / (total_weighted_anchors + epsilon)

return loss

def focal_cb_supcon(h, padded_soz, src_key_padding_mask,
beta=0.999, # Hyperparameter for class balancing weight calculation
gamma=2.0, # Hyperparameter for Focal loss modulation (gamma=0 means no focal loss)
tau=0.2, # Temperature parameter
epsilon=1e-8): # Small value for numerical stability

"""
Focal Class-Balanced Supervised Contrastive loss (using small weights).

Combines Class-Balanced weighting (based on effective number of samples)
with a Focal loss adaptation applied to the positive pairs to focus on harder positives.
Gives a "small weights" formulation for class balancing.

Args:
h ([max_seq_len, batch_size, d_model]): Hidden representation output from model.
padded_soz ([batch_size, max_seq_len]): Multi-hot encoded SOZ label (1 for SOZ, 0 for non-SOZ).
src_key_padding_mask ([batch_size, max_seq_len]): Padding mask (True for padding, False for valid tokens).
beta (float): Hyperparameter for class balancing weight calculation (0.9, 0.99, 0.999 are common).

Higher beta gives more weight to rarer classes.
gamma (float): Focusing parameter for Focal loss. gamma=0 recovers standard SupCon NLL term.

gamma > 0 increases the relative loss for misclassified/low-probability positives.
tau (float): Temperature parameter for scaling similarities.
epsilon (float): Small value added to denominators to prevent division by zero.

Returns:
torch.Tensor: The final computed loss scalar.

"""
batch_loss = 0.0
total_anchors = 0.0 # Normalizing by anchor count

valid_lengths = (~src_key_padding_mask).sum(dim=1)
batch_size = len(valid_lengths)

for batch_idx, num_chan in enumerate(valid_lengths):
if num_chan <= 1: # Need at least 2 channels for contrastive loss

continue

h_pat = h[:num_chan, batch_idx, :] # Representations for this patient [num_chan, d_model]
soz_pat = padded_soz[batch_idx, :num_chan] # Labels for this patient [num_chan]

--- Calculate Class Counts ---
N_soz = soz_pat.sum()
N_non_soz = num_chan - N_soz

Check if all channels are the same class (no contrast possible)
if N_soz == 0 or N_non_soz == 0:

continue
--- End Class Counts ---

Normalize features (important for cosine similarity interpretation)
h_pat_norm = F.normalize(h_pat, p=2, dim=1)

Similarity matrix [num_chan, num_chan]
sim_pat_mat = h_pat_norm @ h_pat_norm.T / tau

--- Identify positive pairs ---
pos_mask = (soz_pat.unsqueeze(0) == soz_pat.unsqueeze(1)).float()
diag_mask = 1 - torch.eye(num_chan, device=h.device)
pos_mask = pos_mask * diag_mask # Exclude self-similarity

--- Calculate Softmax Probabilities & Log Probabilities (Core SupCon calculation) ---
Use stable log-sum-exp trick for denominator
log_sum_exp_sim = torch.logsumexp(sim_pat_mat * diag_mask, dim=1, keepdim=True)
log_prob_all_pairs = sim_pat_mat - log_sum_exp_sim
nll_all_pairs = -log_prob_all_pairs

60

--- Focal Loss Adaptation for Positive Pairs ---
if gamma > 0:

softmax_probs = torch.exp(log_prob_all_pairs)
focal_modulator = torch.pow(1. - softmax_probs, gamma)
modulated_nll_all_pairs = focal_modulator * nll_all_pairs

else:
modulated_nll_all_pairs = nll_all_pairs

--- Sum Modulated Loss over Positive Pairs for each Anchor ---
focal_sum_per_anchor = (pos_mask * modulated_nll_all_pairs).sum(dim=1)
num_positives_per_anchor = pos_mask.sum(dim=1)
normalized_focal_loss_per_anchor = focal_sum_per_anchor / (num_positives_per_anchor + epsilon)

--- Class-Balanced Anchor Weighting (Small Weights Version) ---
weight_soz = (1.0 - beta) / (1.0 - torch.pow(beta, N_soz) + epsilon)
weight_non_soz = (1.0 - beta) / (1.0 - torch.pow(beta, N_non_soz) + epsilon)

Create weights tensor based on anchor label
anchor_weights = torch.where(soz_pat == 1, weight_soz, weight_non_soz)

--- Calculate Final Weighted Loss Per Anchor ---
final_weighted_loss_per_anchor = normalized_focal_loss_per_anchor * anchor_weights

--- Aggregate Batch Loss ---
Summing the weighted loss terms for all anchors in this sample
batch_loss += final_weighted_loss_per_anchor.sum()
total_anchors += num_chan # Count total anchors processed

Normalize the total loss by the total number of anchors processed across the batch
loss = batch_loss / (total_anchors + epsilon)

return loss

A.2.3 Pre-training script
import glob
import os
import csv
from data_hup_chul import HUP_CHUL_Dataset, collate_fn
import torch
from tqdm import tqdm
import random
from loss import focal_cb_supcon
from viz import plot_simdist
from model import SOZDetectionPretraining
from scheduler import LinearWarmupCosineAnnealingLR
from torch.utils.data import DataLoader
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import json

EXP_DIRNAME = "HUP_CHUL_13"
SEED = 1975

with open("pretrain_config.json") as fh:
train_config=json.load(fh)

CLIP_TIME = float(train_config["CLIP_TIME"])
WPT_LEVEL = int(train_config["WPT_LEVEL"])
OVERLAP_RATE = float(train_config["OVERLAP_RATE"])
RELATIVE_NOISE_STD_FACTOR = float(train_config["RELATIVE_NOISE_STD_FACTOR"])
CHANNEL_DROPOUT_RATE = float(train_config["CHANNEL_DROPOUT_RATE"])
BATCH_SIZE = int(train_config["BATCH_SIZE"])
FS = 256
BETA = float(train_config["BETA"])
GAMMA = float(train_config["GAMMA"])
TAU = float(train_config["TAU"])
EPSILON = float(train_config["EPSILON"])

D_FEATURES = int(train_config["D_FEATURES"])
D_MODEL = int(train_config["D_MODEL"])
D_FEEDFORWARD = int(train_config["D_FEEDFORWARD"])
D_HIDDEN = int(train_config["D_HIDDEN"])
MLP_INTERMEDIATE_FACTOR = float(train_config["MLP_INTERMEDIATE_FACTOR"])
NUM_HEADS = int(train_config["NUM_HEADS"])
NUM_LAYERS = int(train_config["NUM_LAYERS"])
DROPOUT = float(train_config["DROPOUT"])
WEIGHT_DECAY = float(train_config["WEIGHT_DECAY"])

61

model_pretrain = SOZDetectionPretraining(D_FEATURES, D_MODEL, D_HIDDEN, NUM_HEADS, NUM_LAYERS, D_FEEDFORWARD, DROPOUT,
MLP_INTERMEDIATE_FACTOR)↪→

WARMUP_EPOCHS = train_config["WARMUP_EPOCHS"]
TOTAL_EPOCHS = train_config["TOTAL_EPOCHS"]
START_LR = float(train_config["START_LR"])
MAX_LR = float(train_config["MAX_LR"])
FINAL_LR = float(train_config["FINAL_LR"])
optimizer = optim.Adam(model_pretrain.parameters(), lr=START_LR, weight_decay=WEIGHT_DECAY)
scheduler = LinearWarmupCosineAnnealingLR(optimizer, WARMUP_EPOCHS, MAX_LR, FINAL_LR, TOTAL_EPOCHS)
writer = SummaryWriter(f"exps/{EXP_DIRNAME}/tensorboard")

config_title = (
Line 1: Basic Data/Input Params
f"$SEED={SEED}, T={CLIP_TIME}s, WPT Lvl={WPT_LEVEL}, BS={BATCH_SIZE}, d_{{feat}}={D_FEATURES}$ \n" # Single $ block
Line 2: Model Architecture Params - Entire line segment in one $ block
f"$d_{{model}}={D_MODEL},\ d_{{ff}}={D_FEEDFORWARD},\ d_{{hidden}}={D_HIDDEN},\ "
f"N_{{h}}={NUM_HEADS},\ N_{{L}}={NUM_LAYERS},\ \\text{{Dropout}}={DROPOUT:.2f}$ \n" # Use \text{} or \mathrm{} for Dropout
Line 3: NEW - Overlap & Augmentation Params
f"Overlap={OVERLAP_RATE*100:.1f}%, Rel. Noise={RELATIVE_NOISE_STD_FACTOR*100:.1f}%, Ch. Dropout={CHANNEL_DROPOUT_RATE*100:.1f}%

\n"↪→
Line 4: Loss Function Params
f"$\\beta={BETA:.3f},\ \\gamma={GAMMA:.2f},\ \\tau={TAU:.2f},\ \\epsilon={EPSILON:.1e}$ \n" # Single $ block
Line 5: Optimizer & LR Schedule
f"{optimizer.__class__.__name__}, LWCA ({WARMUP_EPOCHS}/{TOTAL_EPOCHS}), LR:{START_LR:.1e} {MAX_LR:.1e} {FINAL_LR:.1e}"

)

random.seed(SEED)
HUP_PATH = "/projects/users/zrodiere/data/HUP"
CHUL_PATH = "/projects/users/zrodiere/data/CHUL"
SAVE_DIR = "/projects/users/zrodiere/data/save_pkl"
TRAIN_SPLIT = 0.8
VAL_SPLIT = 0.1
TEST_SPLIT = 0.1
NUM_TRAIN_PATIENTS_TO_PLOT = 6

CHUL_PATIENT_IDS = [os.path.basename(patient_dir) for patient_dir in sorted(glob.glob(os.path.join(CHUL_PATH, "sub-CHUL*")))]
HUP_PATIENT_IDS_PRESENT = [os.path.basename(patient_dir) for patient_dir in sorted(glob.glob(os.path.join(HUP_PATH, "sub-HUP*")))]
HUP_SEEG_PATIENT_IDS = []
HUP_PARTICIPANTS_TSV = "/projects/users/zrodiere/data/HUP/participants.tsv"
with open(HUP_PARTICIPANTS_TSV) as fh:

reader = csv.reader(fh, delimiter="\t")
column_names = next(reader)
participant_idx = column_names.index("participant_id")
implant_idx = column_names.index("implant")
for row in reader:

implant = row[implant_idx]
participant_id = row[participant_idx]
if implant == "SEEG" and participant_id in HUP_PATIENT_IDS_PRESENT:

HUP_SEEG_PATIENT_IDS.append(participant_id)
random.shuffle(CHUL_PATIENT_IDS)
random.shuffle(HUP_SEEG_PATIENT_IDS)

NUM_PATIENTS_TRAIN_CHUL = int(TRAIN_SPLIT * len(CHUL_PATIENT_IDS))
NUM_PATIENTS_TRAIN_HUP = int(TRAIN_SPLIT * len(HUP_SEEG_PATIENT_IDS))
NUM_PATIENTS_VAL_CHUL = int((len(CHUL_PATIENT_IDS) - NUM_PATIENTS_TRAIN_CHUL) * (VAL_SPLIT / (VAL_SPLIT + TEST_SPLIT)))
NUM_PATIENTS_VAL_HUP = int((len(HUP_SEEG_PATIENT_IDS) - NUM_PATIENTS_TRAIN_HUP) * (VAL_SPLIT / (VAL_SPLIT + TEST_SPLIT)))
NUM_PATIENTS_TEST_CHUL = len(CHUL_PATIENT_IDS) - NUM_PATIENTS_TRAIN_CHUL - NUM_PATIENTS_VAL_CHUL
NUM_PATIENTS_TEST_HUP = len(HUP_SEEG_PATIENT_IDS) - NUM_PATIENTS_TRAIN_HUP - NUM_PATIENTS_VAL_HUP

TRAIN_PATIENT_IDS = CHUL_PATIENT_IDS[:NUM_PATIENTS_TRAIN_CHUL] + HUP_SEEG_PATIENT_IDS[:NUM_PATIENTS_TRAIN_HUP]
VAL_PATIENT_IDS = CHUL_PATIENT_IDS[NUM_PATIENTS_TRAIN_CHUL:NUM_PATIENTS_TRAIN_CHUL+NUM_PATIENTS_VAL_CHUL] +

HUP_SEEG_PATIENT_IDS[NUM_PATIENTS_TRAIN_HUP:NUM_PATIENTS_TRAIN_HUP+NUM_PATIENTS_VAL_HUP]↪→
TEST_PATIENT_IDS = CHUL_PATIENT_IDS[NUM_PATIENTS_TRAIN_CHUL+NUM_PATIENTS_VAL_CHUL:] +

HUP_SEEG_PATIENT_IDS[NUM_PATIENTS_TRAIN_HUP+NUM_PATIENTS_VAL_HUP:]↪→
TRAIN_PLOT_PATIENT_IDS = random.sample(TRAIN_PATIENT_IDS, NUM_TRAIN_PATIENTS_TO_PLOT)

ds_train = HUP_CHUL_Dataset(HUP_PATH, CHUL_PATH, TRAIN_PATIENT_IDS, SAVE_DIR, CLIP_TIME, WPT_LEVEL, OVERLAP_RATE, "train",
RELATIVE_NOISE_STD_FACTOR, CHANNEL_DROPOUT_RATE)↪→

ds_val = HUP_CHUL_Dataset(HUP_PATH, CHUL_PATH, VAL_PATIENT_IDS, SAVE_DIR, CLIP_TIME, WPT_LEVEL, OVERLAP_RATE, "eval",
RELATIVE_NOISE_STD_FACTOR, CHANNEL_DROPOUT_RATE)↪→

ds_test = HUP_CHUL_Dataset(HUP_PATH, CHUL_PATH, TEST_PATIENT_IDS, SAVE_DIR, CLIP_TIME, WPT_LEVEL, OVERLAP_RATE, "test",
RELATIVE_NOISE_STD_FACTOR, CHANNEL_DROPOUT_RATE)↪→

ds_plot_val = [HUP_CHUL_Dataset(HUP_PATH, CHUL_PATH, [patient_id], SAVE_DIR, CLIP_TIME, WPT_LEVEL, OVERLAP_RATE, "eval",
RELATIVE_NOISE_STD_FACTOR, CHANNEL_DROPOUT_RATE) for patient_id in VAL_PATIENT_IDS]↪→

ds_plot_train = [HUP_CHUL_Dataset(HUP_PATH, CHUL_PATH, [patient_id], SAVE_DIR, CLIP_TIME, WPT_LEVEL, OVERLAP_RATE, "train",
RELATIVE_NOISE_STD_FACTOR, CHANNEL_DROPOUT_RATE) for patient_id in TRAIN_PLOT_PATIENT_IDS]↪→

dl_train = DataLoader(ds_train, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn)
dl_val = DataLoader(ds_val, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn)
dl_test = DataLoader(ds_test, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn)
dl_plot_val = [DataLoader(ds, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn) for ds in ds_plot_val]
dl_plot_train = [DataLoader(ds, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn) for ds in ds_plot_train]

62

device="cuda"
model_pth_best=f"exps/{EXP_DIRNAME}/model_pretrain_best.pth"
model_pth_last=f"exps/{EXP_DIRNAME}/model_pretrain_last.pth"
best_epoch_loss = float('inf')
best_epoch = 0
train_loss_history = []
val_loss_history = []
model_pretrain.to(device)
for epoch in range(TOTAL_EPOCHS):

model_pretrain.train()
epoch_train_loss_sum = 0.
num_train_batches = 0
for (patient_id,padded_wpt,padded_ch,padded_soz,key_padding_mask) in tqdm(dl_train, desc=f"Epoch {epoch} Train"):

padded_wpt = padded_wpt.to(device, non_blocking=True)
padded_soz = padded_soz.to(device, non_blocking=True)
key_padding_mask = key_padding_mask.to(device, non_blocking=True)

optimizer.zero_grad()
h = model_pretrain(padded_wpt, mask=None, src_key_padding_mask=key_padding_mask)
train_loss = focal_cb_supcon(h, padded_soz, key_padding_mask, beta=BETA, gamma=GAMMA, tau=TAU, epsilon=EPSILON)
train_loss.backward()
optimizer.step()
epoch_train_loss_sum += train_loss.item()
num_train_batches += 1

avg_epoch_train_loss = epoch_train_loss_sum / num_train_batches if num_train_batches > 0 else 0.0
scheduler.step()
writer.add_scalar("epoch_train_loss", avg_epoch_train_loss, epoch)
train_loss_history.append(avg_epoch_train_loss)

model_pretrain.eval()
epoch_val_loss_sum = 0.
num_val_batches = 0
with torch.no_grad():

for (patient_id,padded_wpt,padded_ch,padded_soz, key_padding_mask) in tqdm(dl_val, desc=f"Epoch {epoch} Val"):
padded_wpt = padded_wpt.to(device, non_blocking=True)
padded_soz = padded_soz.to(device, non_blocking=True)
key_padding_mask = key_padding_mask.to(device, non_blocking=True)
h = model_pretrain(padded_wpt, mask=None, src_key_padding_mask=key_padding_mask)
val_loss = focal_cb_supcon(h, padded_soz, key_padding_mask, beta=BETA, gamma=GAMMA, tau=TAU, epsilon=EPSILON)
epoch_val_loss_sum += val_loss.item()
num_val_batches += 1

avg_epoch_val_loss = epoch_val_loss_sum / num_val_batches if num_val_batches > 0 else 0.0
writer.add_scalar("epoch_val_loss", avg_epoch_val_loss, epoch)
val_loss_history.append(avg_epoch_val_loss)
for val_patient_id, dl in zip(VAL_PATIENT_IDS, dl_plot_val):

plot_simdist(dl=dl,
model=model_pretrain,
plot_title=f"{val_patient_id} @ Epoch {epoch} (validation set)",
plot_config=config_title,
png_path=f"exps/{EXP_DIRNAME}/plots/simdist_val_"+str(val_patient_id)+"_ep"+str(epoch).zfill(2)+".png",
device=device,
train_loss_history=train_loss_history,
val_loss_history=val_loss_history,
current_epoch=epoch)

for train_patient_id, dl in zip(TRAIN_PLOT_PATIENT_IDS, dl_plot_train):
plot_simdist(dl=dl,

model=model_pretrain,
plot_title=f"{train_patient_id} @ Epoch {epoch} (training set)",
plot_config=config_title,
png_path=f"exps/{EXP_DIRNAME}/plots/simdist_train_"+str(train_patient_id)+"_ep"+str(epoch).zfill(2)+".png",
device=device,
train_loss_history=train_loss_history,
val_loss_history=val_loss_history,
current_epoch=epoch)

if avg_epoch_val_loss < best_epoch_loss:
best_epoch_loss = avg_epoch_val_loss
torch.save(model_pretrain.state_dict(), model_pth_best)
print(f"Model saved at epoch {epoch} with epoch val loss: {avg_epoch_val_loss:.6f}")

torch.save(model_pretrain.state_dict(), model_pth_last)

print(f"epoch {epoch} train loss: {avg_epoch_train_loss:.6f}")
print(f"epoch {epoch} val loss: {avg_epoch_val_loss:.6f}")

A.2.4 Fine-tuning script
import glob
import os

63

import csv
from data_hup_chul import HUP_CHUL_Dataset, collate_fn
import torch
from tqdm import tqdm
import random
from loss import focal_cb_bce_loss_with_logits, get_precision_micro, get_recall_micro
from viz import plot_roc, plot_scoredist
from model import SOZDetectionPretraining, SOZDetectionFinetuning
from scheduler import LinearWarmupCosineAnnealingLR
from torch.utils.data import DataLoader
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
import json

EXP_DIRNAME = "HUP_CHUL_13_FINETUNED_5"
PRETRAIN_PATH = "/projects/users/zrodiere/contrastive_transformer/exps/HUP_CHUL_13/model_pretrain_best.pth"
PREV_FINETUNED_PATH = "/projects/users/zrodiere/contrastive_transformer/exps/HUP_CHUL_13_FINETUNED_4/model_finetuned_best.pth"
SEED = 1975
TRAIN_SPLIT = 0.8
VAL_SPLIT = 0.1
TEST_SPLIT = 0.1
NUM_TRAIN_PATIENTS_TO_PLOT = 6
OVERALL_ROC_PLOT_FREQ = 5
PATIENT_ROC_PLOT_FREQ = 20
HEAD_LR = 5e-7
BACKBONE_LR = 5e-7

print("Fine-tuning SOZ classification model")
with open("finetune_config.json") as fh:

train_config=json.load(fh)
CLIP_TIME = float(train_config["CLIP_TIME"])
WPT_LEVEL = int(train_config["WPT_LEVEL"])
OVERLAP_RATE = float(train_config["OVERLAP_RATE"])
RELATIVE_NOISE_STD_FACTOR = float(train_config["RELATIVE_NOISE_STD_FACTOR"])
CHANNEL_DROPOUT_RATE = float(train_config["CHANNEL_DROPOUT_RATE"])
BATCH_SIZE = int(train_config["BATCH_SIZE"])
FS = 256
BETA = float(train_config["BETA"])
GAMMA = float(train_config["GAMMA"])

D_FEATURES = int(train_config["D_FEATURES"])
D_MODEL = int(train_config["D_MODEL"])
D_FEEDFORWARD = int(train_config["D_FEEDFORWARD"])
D_HIDDEN = int(train_config["D_HIDDEN"])
MLP_INTERMEDIATE_FACTOR = float(train_config["MLP_INTERMEDIATE_FACTOR"])
NUM_HEADS = int(train_config["NUM_HEADS"])
NUM_LAYERS = int(train_config["NUM_LAYERS"])
DROPOUT = float(train_config["DROPOUT"])
WEIGHT_DECAY = float(train_config["WEIGHT_DECAY"])
model_pretrain = SOZDetectionPretraining(D_FEATURES, D_MODEL, D_HIDDEN, NUM_HEADS, NUM_LAYERS, D_FEEDFORWARD, DROPOUT,

MLP_INTERMEDIATE_FACTOR)↪→
model_pretrain.load_state_dict(torch.load(PRETRAIN_PATH, weights_only=True))
model_finetuned = SOZDetectionFinetuning(model_pretrain)
model_finetuned.load_state_dict(torch.load(PREV_FINETUNED_PATH, weights_only=True))

for param in model_finetuned.pretrained.parameters():
param.requires_grad = False

print("Pre-trained backbone frozen.")

Unfreeze specific parts of the backbone
print("Unfreezing all Transformer layers and final norm of the pretrained backbone...")

Unfreeze all TransformerEncoder layers
unfrozen_backbone_params_list = []
for tr_layer in model_finetuned.pretrained.TransformerEncoder.layers:

for param in tr_layer.parameters():
param.requires_grad = True

unfrozen_backbone_params_list.extend(list(tr_layer.parameters())) # Add their parameters

Unfreeze the final LayerNorm of the TransformerEncoder
norm_to_unfreeze = model_finetuned.pretrained.TransformerEncoder.norm
for param in norm_to_unfreeze.parameters():

param.requires_grad = True
unfrozen_backbone_params_list.extend(list(norm_to_unfreeze.parameters()))

Parameters for the classification head (always trainable in this setup)
head_params_list = list(model_finetuned.classification_head.parameters())

trainable_unfrozen_backbone_params = filter(lambda p: p.requires_grad, unfrozen_backbone_params_list)
trainable_head_params = filter(lambda p: p.requires_grad, head_params_list)

TOTAL_EPOCHS = train_config["TOTAL_EPOCHS"]

64

optimizer = optim.Adam([
{'params': trainable_head_params, 'lr': HEAD_LR}, # Group 1: Head
{'params': trainable_unfrozen_backbone_params, 'lr': BACKBONE_LR} # Group 2: Unfrozen backbone

], weight_decay=WEIGHT_DECAY)

writer = SummaryWriter(f"exps/{EXP_DIRNAME}/tensorboard")

config_title = (
Line 1: Basic Data/Input Params
f"$SEED={SEED}, T={CLIP_TIME}s, WPT Lvl={WPT_LEVEL}, BS={BATCH_SIZE}, d_{{feat}}={D_FEATURES}$ \n" # Single $ block
Line 2: Model Architecture Params - Entire line segment in one $ block
f"$d_{{model}}={D_MODEL},\ d_{{ff}}={D_FEEDFORWARD},\ d_{{hidden}}={D_HIDDEN},\ "
f"N_{{h}}={NUM_HEADS},\ N_{{L}}={NUM_LAYERS},\ \\text{{Dropout}}={DROPOUT:.2f}$ \n" # Use \text{} or \mathrm{} for Dropout
Line 3: NEW - Overlap & Augmentation Params
f"Overlap={OVERLAP_RATE*100:.1f}%, Rel. Noise={RELATIVE_NOISE_STD_FACTOR*100:.1f}%, Ch. Dropout={CHANNEL_DROPOUT_RATE*100:.1f}%

\n"↪→
Line 4: Loss Function Params
f"$\\beta={BETA:.3f},\ \\gamma={GAMMA:.2f}$ \n" # Single $ block
Line 5: Optimizer & LR
f"{optimizer.__class__.__name__}, Head LR={HEAD_LR:.1e}, Backbone LR={BACKBONE_LR:.1e}, WD={WEIGHT_DECAY:.1e}"

)

random.seed(SEED)
HUP_PATH = "/projects/users/zrodiere/data/HUP"
CHUL_PATH = "/projects/users/zrodiere/data/CHUL"
SAVE_DIR = "/projects/users/zrodiere/data/save_pkl"

CHUL_PATIENT_IDS = [os.path.basename(patient_dir) for patient_dir in sorted(glob.glob(os.path.join(CHUL_PATH, "sub-CHUL*")))]
HUP_PATIENT_IDS_PRESENT = [os.path.basename(patient_dir) for patient_dir in sorted(glob.glob(os.path.join(HUP_PATH, "sub-HUP*")))]
HUP_SEEG_PATIENT_IDS = []
HUP_PARTICIPANTS_TSV = "/projects/users/zrodiere/data/HUP/participants.tsv"
with open(HUP_PARTICIPANTS_TSV) as fh:

reader = csv.reader(fh, delimiter="\t")
column_names = next(reader)
participant_idx = column_names.index("participant_id")
implant_idx = column_names.index("implant")
for row in reader:

implant = row[implant_idx]
participant_id = row[participant_idx]
if implant == "SEEG" and participant_id in HUP_PATIENT_IDS_PRESENT:

HUP_SEEG_PATIENT_IDS.append(participant_id)
random.shuffle(CHUL_PATIENT_IDS)
random.shuffle(HUP_SEEG_PATIENT_IDS)

NUM_PATIENTS_TRAIN_CHUL = int(TRAIN_SPLIT * len(CHUL_PATIENT_IDS))
NUM_PATIENTS_TRAIN_HUP = int(TRAIN_SPLIT * len(HUP_SEEG_PATIENT_IDS))
NUM_PATIENTS_VAL_CHUL = int((len(CHUL_PATIENT_IDS) - NUM_PATIENTS_TRAIN_CHUL) * (VAL_SPLIT / (VAL_SPLIT + TEST_SPLIT)))
NUM_PATIENTS_VAL_HUP = int((len(HUP_SEEG_PATIENT_IDS) - NUM_PATIENTS_TRAIN_HUP) * (VAL_SPLIT / (VAL_SPLIT + TEST_SPLIT)))
NUM_PATIENTS_TEST_CHUL = len(CHUL_PATIENT_IDS) - NUM_PATIENTS_TRAIN_CHUL - NUM_PATIENTS_VAL_CHUL
NUM_PATIENTS_TEST_HUP = len(HUP_SEEG_PATIENT_IDS) - NUM_PATIENTS_TRAIN_HUP - NUM_PATIENTS_VAL_HUP

TRAIN_PATIENT_IDS = CHUL_PATIENT_IDS[:NUM_PATIENTS_TRAIN_CHUL] + HUP_SEEG_PATIENT_IDS[:NUM_PATIENTS_TRAIN_HUP]
VAL_PATIENT_IDS = CHUL_PATIENT_IDS[NUM_PATIENTS_TRAIN_CHUL:NUM_PATIENTS_TRAIN_CHUL+NUM_PATIENTS_VAL_CHUL] +

HUP_SEEG_PATIENT_IDS[NUM_PATIENTS_TRAIN_HUP:NUM_PATIENTS_TRAIN_HUP+NUM_PATIENTS_VAL_HUP]↪→
TEST_PATIENT_IDS = CHUL_PATIENT_IDS[NUM_PATIENTS_TRAIN_CHUL+NUM_PATIENTS_VAL_CHUL:] +

HUP_SEEG_PATIENT_IDS[NUM_PATIENTS_TRAIN_HUP+NUM_PATIENTS_VAL_HUP:]↪→
TRAIN_PLOT_PATIENT_IDS = random.sample(TRAIN_PATIENT_IDS, NUM_TRAIN_PATIENTS_TO_PLOT)

ds_train = HUP_CHUL_Dataset(HUP_PATH, CHUL_PATH, TRAIN_PATIENT_IDS, SAVE_DIR, CLIP_TIME, WPT_LEVEL, OVERLAP_RATE, "train",
RELATIVE_NOISE_STD_FACTOR, CHANNEL_DROPOUT_RATE)↪→

ds_val = HUP_CHUL_Dataset(HUP_PATH, CHUL_PATH, VAL_PATIENT_IDS, SAVE_DIR, CLIP_TIME, WPT_LEVEL, OVERLAP_RATE, "eval",
RELATIVE_NOISE_STD_FACTOR, CHANNEL_DROPOUT_RATE)↪→

ds_test = HUP_CHUL_Dataset(HUP_PATH, CHUL_PATH, TEST_PATIENT_IDS, SAVE_DIR, CLIP_TIME, WPT_LEVEL, OVERLAP_RATE, "test",
RELATIVE_NOISE_STD_FACTOR, CHANNEL_DROPOUT_RATE)↪→

ds_plot_val = [HUP_CHUL_Dataset(HUP_PATH, CHUL_PATH, [patient_id], SAVE_DIR, CLIP_TIME, WPT_LEVEL, OVERLAP_RATE, "eval",
RELATIVE_NOISE_STD_FACTOR, CHANNEL_DROPOUT_RATE) for patient_id in VAL_PATIENT_IDS]↪→

ds_plot_train = [HUP_CHUL_Dataset(HUP_PATH, CHUL_PATH, [patient_id], SAVE_DIR, CLIP_TIME, WPT_LEVEL, OVERLAP_RATE, "train",
RELATIVE_NOISE_STD_FACTOR, CHANNEL_DROPOUT_RATE) for patient_id in TRAIN_PLOT_PATIENT_IDS]↪→

dl_train = DataLoader(ds_train, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn)
dl_val = DataLoader(ds_val, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn)
dl_test = DataLoader(ds_test, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn)
dl_plot_val = [DataLoader(ds, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn) for ds in ds_plot_val]
dl_plot_train = [DataLoader(ds, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_fn) for ds in ds_plot_train]

device="cuda"
model_pth_best=f"exps/{EXP_DIRNAME}/model_finetuned_best.pth"
model_pth_last=f"exps/{EXP_DIRNAME}/model_finetuned_last.pth"
best_epoch_loss = float('inf')
best_epoch = 0
train_loss_history = []
val_loss_history = []
model_finetuned.to(device)

65

for epoch in range(TOTAL_EPOCHS):
model_finetuned.train()
epoch_train_loss_sum = 0.
num_train_batches = 0
for (patient_id,padded_wpt,padded_ch,padded_soz,key_padding_mask) in tqdm(dl_train, desc=f"Epoch {epoch} Train"):

padded_wpt = padded_wpt.to(device, non_blocking=True)
padded_soz = padded_soz.to(device, non_blocking=True)
key_padding_mask = key_padding_mask.to(device, non_blocking=True)

optimizer.zero_grad()
unbounded_scores = model_finetuned(padded_wpt, mask=None, src_key_padding_mask=key_padding_mask)
train_loss = focal_cb_bce_loss_with_logits(unbounded_scores, padded_soz, key_padding_mask, beta=BETA, gamma=GAMMA)
train_loss.backward()
optimizer.step()
epoch_train_loss_sum += train_loss.item()
num_train_batches += 1

avg_epoch_train_loss = epoch_train_loss_sum / num_train_batches if num_train_batches > 0 else 0.0
writer.add_scalar("epoch_train_loss", avg_epoch_train_loss, epoch)
train_loss_history.append(avg_epoch_train_loss)

model_finetuned.eval()
epoch_val_loss_sum = 0.
num_val_batches = 0
with torch.no_grad():

for (patient_id,padded_wpt,padded_ch,padded_soz, key_padding_mask) in tqdm(dl_val, desc=f"Epoch {epoch} Val"):
padded_wpt = padded_wpt.to(device, non_blocking=True)
padded_soz = padded_soz.to(device, non_blocking=True)
key_padding_mask = key_padding_mask.to(device, non_blocking=True)
unbounded_scores = model_finetuned(padded_wpt, mask=None, src_key_padding_mask=key_padding_mask)
val_loss = focal_cb_bce_loss_with_logits(unbounded_scores, padded_soz, key_padding_mask, beta=BETA, gamma=GAMMA)
epoch_val_loss_sum += val_loss.item()
num_val_batches += 1

avg_epoch_val_loss = epoch_val_loss_sum / num_val_batches if num_val_batches > 0 else 0.0
writer.add_scalar("epoch_val_loss", avg_epoch_val_loss, epoch)
val_loss_history.append(avg_epoch_val_loss)

if epoch % PATIENT_ROC_PLOT_FREQ == (PATIENT_ROC_PLOT_FREQ -1) or epoch == 0 or epoch == TOTAL_EPOCHS - 1:
for val_patient_id, dl in zip(VAL_PATIENT_IDS, dl_plot_val):

plot_roc(
dl=dl,
model=model_finetuned,
plot_title=f"ROC Curve - {val_patient_id} @ Epoch {epoch} (validation set)",
plot_config=config_title,
png_path=f"exps/{EXP_DIRNAME}/plots/roc_val_{val_patient_id}_ep{str(epoch).zfill(2)}.png",
device=device,
train_loss_history=train_loss_history,
val_loss_history=val_loss_history,
current_epoch=epoch

)
plot_scoredist(

dl=dl,
model=model_finetuned,
plot_title=f"Score distributions - {val_patient_id} @ Epoch {epoch} (validation set)",
plot_config=config_title,
png_path=f"exps/{EXP_DIRNAME}/plots/scoredist_val_{val_patient_id}_ep{str(epoch).zfill(2)}.png",
device=device,
train_loss_history=train_loss_history,
val_loss_history=val_loss_history,
current_epoch=epoch

)
for train_patient_id, dl in zip(TRAIN_PATIENT_IDS, dl_plot_train):

plot_roc(
dl=dl,
model=model_finetuned,
plot_title=f"ROC Curve - {train_patient_id} @ Epoch {epoch} (training set)",
plot_config=config_title,
png_path=f"exps/{EXP_DIRNAME}/plots/roc_train_{train_patient_id}_ep{str(epoch).zfill(2)}.png",
device=device,
train_loss_history=train_loss_history,
val_loss_history=val_loss_history,
current_epoch=epoch

)
plot_scoredist(

dl=dl,
model=model_finetuned,
plot_title=f"Score distributions - {train_patient_id} @ Epoch {epoch} (training set)",
plot_config=config_title,
png_path=f"exps/{EXP_DIRNAME}/plots/scoredist_train_{train_patient_id}_ep{str(epoch).zfill(2)}.png",
device=device,
train_loss_history=train_loss_history,
val_loss_history=val_loss_history,

66

current_epoch=epoch
)

if epoch % OVERALL_ROC_PLOT_FREQ == (OVERALL_ROC_PLOT_FREQ -1) or epoch == 0 or epoch == TOTAL_EPOCHS - 1:
plot_roc(

dl=dl_val,
model=model_finetuned,
plot_title=f"ROC Curve - Validation Set @ Epoch {epoch}",
plot_config=config_title,
png_path=f"exps/{EXP_DIRNAME}/plots/roc_val_global_ep{str(epoch).zfill(2)}.png",
device=device,
train_loss_history=train_loss_history,
val_loss_history=val_loss_history,
current_epoch=epoch

)
plot_scoredist(

dl=dl_val,
model=model_finetuned,
plot_title=f"Score distributions - Validation Set @ Epoch {epoch}",
plot_config=config_title,
png_path=f"exps/{EXP_DIRNAME}/plots/scoredist_val_global_ep{str(epoch).zfill(2)}.png",
device=device,
train_loss_history=train_loss_history,
val_loss_history=val_loss_history,
current_epoch=epoch

)

if avg_epoch_val_loss < best_epoch_loss:
best_epoch_loss = avg_epoch_val_loss
torch.save(model_finetuned.state_dict(), model_pth_best)
print(f"Model saved at epoch {epoch} with epoch val loss: {avg_epoch_val_loss:.6f}")

torch.save(model_finetuned.state_dict(), model_pth_last)

print(f"Epoch {epoch} train loss: {avg_epoch_train_loss:.6f}")
print(f"Epoch {epoch} val loss: {avg_epoch_val_loss:.6f}")

A.3 Visualization
import torch
import seaborn as sns
import matplotlib.pyplot as plt
import os
import numpy as np
from sklearn.metrics import roc_curve, auc # For efficient ROC calculation

def plot_simdist(dl, model, plot_title, plot_config, png_path, device, train_loss_history: list, val_loss_history: list,
current_epoch: int):↪→
os.makedirs(os.path.dirname(png_path), exist_ok=True)
both_not_soz_sims_all = []
both_soz_sims_all = []
one_in_one_out_sims_all = []

for (patient_id,padded_wpt,padded_ch,padded_soz, key_padding_mask) in dl:
padded_wpt = padded_wpt.to(device, non_blocking=True)
padded_soz = padded_soz.to(device, non_blocking=True)
key_padding_mask = key_padding_mask.to(device, non_blocking=True)
h = model(padded_wpt, mask=None, src_key_padding_mask=key_padding_mask)
valid_lengths = (~key_padding_mask).sum(dim=1)
for i, valid_length in enumerate(valid_lengths):

h_norm = torch.nn.functional.normalize(h[:valid_length, i, :], p=2, dim=1)
S = h_norm @ h_norm.T
soz = padded_soz[i, :valid_length]
both_not_soz = ~soz.unsqueeze(0) & ~soz.unsqueeze(1)
both_soz = soz.unsqueeze(0) & soz.unsqueeze(1)
one_in_one_out = (soz.unsqueeze(0) & ~soz.unsqueeze(1)) | (~soz.unsqueeze(0) & soz.unsqueeze(1))
remove_diag = ~torch.eye(len(soz), dtype=torch.bool, device=both_not_soz.device)
both_not_soz_sims_all.append(S[both_not_soz & remove_diag].flatten().detach().cpu())
both_soz_sims_all.append(S[both_soz & remove_diag].flatten().detach().cpu())
one_in_one_out_sims_all.append(S[one_in_one_out].flatten().detach().cpu())

del padded_wpt, padded_soz, key_padding_mask, h
#torch.cuda.empty_cache()

both_not_soz_sims_all = torch.cat(both_not_soz_sims_all)
both_soz_sims_all = torch.cat(both_soz_sims_all)
one_in_one_out_sims_all = torch.cat(one_in_one_out_sims_all)

fig, ax = plt.subplots(figsize=(10, 7))
sns.histplot(both_not_soz_sims_all, stat="density", label="Both not SOZ", alpha=1, color="k", ax=ax, element="step", fill=True)
sns.histplot(both_soz_sims_all, stat="density", label="Both SOZ", alpha=0.5, color="tab:blue", ax=ax, element="step",

fill=True)↪→

67

sns.histplot(one_in_one_out_sims_all, stat="density", label="One in One out", alpha=0.5, color="tab:orange", ax=ax,
element="step", fill=True)↪→

ax.set_xlabel("Cosine similarity")
ax.set_ylabel("Density")
ax.legend(title="Pair groups")
ax.set_title(plot_title)
ax.set_xlim(0.6, 1.0)

info_box = fig.text(
0.02, 0.98, plot_config,
transform=fig.transFigure, fontsize=9,
verticalalignment='top', horizontalalignment='left',
bbox=dict(boxstyle='round,pad=0.4', fc='wheat', alpha=0.4)

)

--- Add Inset Axes for Loss History ---
Define position: [left, bottom, width, height] in figure coordinates (0-1)
Adjust these values to place it correctly, avoiding overlap
inset_left = 0.55
inset_bottom = 0.8
inset_width = 0.35
inset_height = 0.18
ax_inset = fig.add_axes([inset_left, inset_bottom, inset_width, inset_height])

Prepare data for inset plot
epochs_plotted = np.arange(current_epoch + 1)
train_losses_plotted = train_loss_history[:current_epoch+1]
val_losses_plotted = val_loss_history[:current_epoch+1]

Plot on inset axes
ax_inset.plot(epochs_plotted, train_losses_plotted, label='Train Loss', color='tab:orange', marker='.', linestyle='-')
ax_inset.plot(epochs_plotted, val_losses_plotted, label='Val Loss', color='tab:blue', marker='.', linestyle='-')

Customize inset axes
ax_inset.set_title('Loss History', fontsize=9)
ax_inset.set_xlabel('Epoch', fontsize=8)
ax_inset.set_ylabel('Avg Loss', fontsize=8)
ax_inset.tick_params(axis='both', which='major', labelsize=7)
ax_inset.grid(True, linestyle='--', alpha=0.6)
Optionally set y-limits if loss varies a lot, e.g., ax_inset.set_ylim(bottom=0)
Add a legend to the inset if space allows
ax_inset.set_ylim(0.07, 0.09)
ax_inset.legend(fontsize=7, loc='best') # Might be cluttered

Adjust main plot layout to prevent title overlap etc.
Increase top margin if needed
fig.subplots_adjust(left=0.1, bottom=0.1, right=0.95, top=0.7) # Increased top margin
plt.savefig(png_path, bbox_inches='tight') # Use bbox_inches='tight'
plt.close(fig)

def get_all_scores_and_labels(dl, model, device):
"""
Iterates through the DataLoader to get all unbounded scores and true SOZ labels
for all valid channels.
"""
all_scores_list = []
all_true_labels_list = []
for (patient_id, padded_wpt, padded_ch, padded_soz, key_padding_mask) in dl:

padded_wpt = padded_wpt.to(device, non_blocking=True)
padded_soz_labels = padded_soz.to(device, non_blocking=True) # Keep as original type (bool or int)
key_padding_mask = key_padding_mask.to(device, non_blocking=True)

Model forward pass
Assuming model_finetuned structure:
unbounded_scores shape (max_seq_len, batch_size, 1)
unbounded_scores_batch = model(padded_wpt, mask=None, src_key_padding_mask=key_padding_mask)

valid_lengths = (~key_padding_mask).sum(dim=1)
for i, valid_length in enumerate(valid_lengths):

if valid_length == 0: continue

Get scores for valid channels for this sample
unbounded_scores_batch is (max_channels, batch_size, 1)
We need (valid_length,)
scores_sample_valid = unbounded_scores_batch[:valid_length, i, :].squeeze(-1) # Squeeze the last dim

Get true labels for valid channels for this sample
true_labels_sample_valid = padded_soz_labels[i, :valid_length]

all_scores_list.append(scores_sample_valid.detach().cpu())
all_true_labels_list.append(true_labels_sample_valid.detach().cpu())

68

if not all_scores_list: # Handle empty dataloader case
return torch.empty(0), torch.empty(0)

Concatenate all scores and labels from the entire dataset
all_scores_flat = torch.cat(all_scores_list)
all_true_labels_flat = torch.cat(all_true_labels_list)

return all_scores_flat, all_true_labels_flat

def plot_roc(dl, model, plot_title, plot_config, png_path, device, train_loss_history: list, val_loss_history: list, current_epoch:
int):↪→
os.makedirs(os.path.dirname(png_path), exist_ok=True)

1. Get all scores and true labels
all_scores, all_true_labels = get_all_scores_and_labels(dl, model, device)

Ensure we have data to plot
if all_scores.numel() == 0 or all_true_labels.numel() == 0:

print(f"Warning: No data to plot ROC for '{plot_title}'. Skipping.")
return

Convert to NumPy for scikit-learn
y_true_np = all_true_labels.numpy().astype(int)
y_scores_np = torch.sigmoid(all_scores).numpy()

2. Calculate ROC curve points and AUC using scikit-learn
(handles multiple thresholds automatically and efficiently)
fpr, tpr, thresholds = roc_curve(y_true_np, y_scores_np)
roc_auc = auc(fpr, tpr)

--- Plotting ---
fig, ax = plt.subplots(figsize=(10, 7)) # Main plot axes

Plot ROC curve
ax.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (AUC = {roc_auc:.3f})')
ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--', label='Chance (AUC = 0.500)') # Diagonal line
ax.plot(0, 0, marker='o', markersize=15, color='red', label='Always Predict No SOZ')
ax.plot(1, 1, marker='o', markersize=15, color='purple', label='Always Predict SOZ')

Customize main ROC plot
ax.set_xlim([0.0, 1.0])
ax.set_ylim([0.0, 1.05]) # Slightly more than 1.0 for better visibility of top curve
ax.set_xlabel('False Positive Rate')
ax.set_ylabel('True Positive Rate')
ax.set_title(plot_title)
ax.legend(loc="lower right")
ax.grid(True, linestyle='--', alpha=0.7)

Configuration Info Box (same as plot_simdist)
info_box = fig.text(

0.02, 0.98, plot_config,
transform=fig.transFigure, fontsize=9,
verticalalignment='top', horizontalalignment='left',
bbox=dict(boxstyle='round,pad=0.4', fc='wheat', alpha=0.4)

)

--- Add Inset Axes for Loss History (same as plot_simdist) ---
inset_left = 0.55 #0.55 # Adjusted for potentially wider ROC plot
inset_bottom = 0.78 #0.78 # Adjusted to be lower, ROC curve is main focus
inset_width = 0.35
inset_height = 0.18 #0.18
ax_inset = fig.add_axes([inset_left, inset_bottom, inset_width, inset_height])

epochs_plotted = np.arange(current_epoch + 1)
train_losses_plotted = train_loss_history[:current_epoch+1]
val_losses_plotted = val_loss_history[:current_epoch+1]

ax_inset.plot(epochs_plotted, train_losses_plotted, label='Train Loss', color='tab:orange', marker='.', linestyle='-')
ax_inset.plot(epochs_plotted, val_losses_plotted, label='Val Loss', color='tab:blue', marker='.', linestyle='-')

ax_inset.set_title('Loss History', fontsize=9)
ax_inset.set_xlabel('Epoch', fontsize=8)
ax_inset.set_ylabel('Avg Loss', fontsize=8)
ax_inset.tick_params(axis='both', which='major', labelsize=7)
ax_inset.grid(True, linestyle='--', alpha=0.6)
ax_inset.set_ylim(0.07, 0.09) # Adjust based on your typical loss range
ax_inset.legend(fontsize=7, loc='best')

Adjust main plot layout
fig.subplots_adjust(left=0.1, bottom=0.1, right=0.95, top=0.7)

plt.savefig(png_path, bbox_inches='tight')

69

plt.close(fig)

def plot_scoredist(dl, model, plot_title, plot_config, png_path, device, train_loss_history: list, val_loss_history: list,
current_epoch: int):↪→
os.makedirs(os.path.dirname(png_path), exist_ok=True)

1. Get all scores and true labels
all_scores, all_true_labels = get_all_scores_and_labels(dl, model, device)

Ensure we have data to plot
if all_scores.numel() == 0 or all_true_labels.numel() == 0:

print(f"Warning: No data to plot score distribution for '{plot_title}'. Skipping.")
return

Convert to NumPy for scikit-learn
y_true_np = all_true_labels.numpy().astype(int)
y_scores_np = torch.sigmoid(all_scores).numpy()

scores_from_soz = np.array([score for score,label in zip(y_scores_np, y_true_np) if label==1])
scores_from_non_soz = np.array([score for score,label in zip(y_scores_np, y_true_np) if label==0])

--- Plotting ---
fig, ax = plt.subplots(figsize=(10, 7))
if scores_from_soz.size > 0:

sns.histplot(scores_from_soz, stat="density", label="Ground tr. SOZ", alpha=1, color="tab:blue", ax=ax, element="step",
fill=True)↪→

else:
print(f"Warning: No SOZ samples to plot scores for in '{plot_title}'.")

if scores_from_non_soz.size > 0:
sns.histplot(scores_from_non_soz, stat="density", label="Ground tr. not SOZ", alpha=0.5, color="tab:orange", ax=ax,

element="step", fill=True)↪→
else:

print(f"Warning: No non-SOZ samples to plot scores for in '{plot_title}'.")
ax.set_xlabel("Score")
ax.set_ylabel("Density")
ax.legend(title="Ground truth labels")
ax.set_title(plot_title)
ax.set_xlim(0.0, 1.0)

info_box = fig.text(
0.02, 0.98, plot_config,
transform=fig.transFigure, fontsize=9,
verticalalignment='top', horizontalalignment='left',
bbox=dict(boxstyle='round,pad=0.4', fc='wheat', alpha=0.4)

)

inset_left = 0.55
inset_bottom = 0.80
inset_width = 0.35
inset_height = 0.15
ax_inset = fig.add_axes([inset_left, inset_bottom, inset_width, inset_height])

epochs_plotted = np.arange(current_epoch + 1)
train_losses_plotted = train_loss_history[:current_epoch+1]
val_losses_plotted = val_loss_history[:current_epoch+1]

ax_inset.plot(epochs_plotted, train_losses_plotted, label='Train Loss', color='tab:orange', marker='.', linestyle='-')
ax_inset.plot(epochs_plotted, val_losses_plotted, label='Val Loss', color='tab:blue', marker='.', linestyle='-')

ax_inset.set_title('Loss History', fontsize=9)
ax_inset.set_xlabel('Epoch', fontsize=8)
ax_inset.set_ylabel('Avg Loss', fontsize=8)
ax_inset.tick_params(axis='both', which='major', labelsize=7)
ax_inset.grid(True, linestyle='--', alpha=0.6)
ax_inset.legend(fontsize=7, loc='best')

Adjust main plot layout
fig.subplots_adjust(left=0.1, bottom=0.1, right=0.95, top=0.7) # Ensure top is adjusted for info box
plt.savefig(png_path, bbox_inches='tight')
plt.close(fig)

70

	Introduction
	Internship Organization and Context
	Working with sEEG data
	Understanding the sEEG modality
	Data formats
	Overview of the iEEG-BIDS CHUL dataset
	Time-Frequency Features as Effective Inputs
	PyTorch implementation

	First approach: Modeling Anomalies on a self-supervised DCGRU model
	Diffusion convolution operation
	Undirected graphs
	Directed graphs

	Connectivity Graphs
	Distance-Based Graph
	Connectivity-Based Graph (Phase Locking Value)

	DCGRU cell
	Encoder-Decoder Architecture for Spatio-Temporal Prediction

	Transformer-based SOZ Detection with Contrastive Pre-training
	Model Architecture: A Transformer for Channel-wise SOZ-Detection
	Contrastive Pre-training with a Focal Class-Balanced Loss
	Fine-tuning for SOZ Channel Classification
	Preliminary Results and Discussion

	Conclusion and Future Work
	References
	Python Implementation Details
	Data Processing and Feature Extraction
	Db-4 Wavelet Packet Transform PyTorch implementation
	HUP+CHUL Dataset interface

	Core Model and Training Framework
	Model architecture
	Loss functions
	Pre-training script
	Fine-tuning script

	Visualization

