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ABSTRACT

For the clinical study of epilepsy, we develop a transformer encoder
for the detection of Seizure Onset Zone (SOZ) from stereo-EEG. It
integrates clinically grounded time-frequency features with spatial
contrastive pre-training. While prior spatial transformer approaches
analyze learned representations, our method uniquely combines: (1)
engineered time-frequency representations (TFRs) encoding epilep-
tic spikes and oscillations, and (2) a contrastive objective leveraging
anatomical relationships between the electrode contacts that are in
the SOZ and the ones outside the SOZ.

The model processes heterogeneous sEEG records from differ-
ent patients, using both ictal and interictal data. This contrastive
strategy minimizes representational similarity between contact pairs
on either side of the SOZ boundary while maximizing intra-SOZ
similarity.

Attention heads provide interpretable connectivity patterns,
bridging data-driven learning with the study of functional connec-
tivity networks.

Initial experiments demonstrate feasibility, with preliminary ev-
idence of improved generalization between patients. Although full
validation is still ongoing, this communication will highlight how
domain-informed TFRs combined with contrastive spatial learn-
ing advance SOZ detection, and pave the way toward anatomically
grounded and data-efficient tools for epilepsy surgery planning.

1. INTRODUCTION
Epilepsy is a prevalent neurological disorder [1]. For drug-resistant
focal epilepsy, neurosurgical intervention to resect the epilepto-
genic zone (EZ) can be the only curative treatment. One aspect
of the preparatory localization of the Seizure Onset Zone (SOZ) is
to analyze stereo-EEG signals, which are intracranial measures at
electrodes (typically between 8 and 12, each with 10 to 12 contact
points). These sEEG signals, recorded over a long period of time,
help to identify the SOZ considering the connectivity between them
[2, 3], the apparition of spikes [4, 5] and their propagation in the
epileptogenic network, and/or the existence of high frequency oscil-
lations (HFOs) [6, 7]. They all serve as markers of epilepsy and of
the SOZ [5, 8]. In the recent past, we have looked at a graph signal
processing approach to find how the connectivity between signals is
temporally organized during seizures [9, 10]. However, one needs
to be able to consider features related to spikes, ripples, and HFOs
– which are best apparent in time-frequency representations of the
signals [11, 12] – jointly with the connectivity between the various
zones in the brain.
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The approach developed here is a Deep Learning (DL) method
for the detection of the SOZ, by coding all these aspects in a trans-
former that captures connections between contacts by the attention
mechanism [13], and which is applied to time-frequency features.
The work has common elements with [14] but we develop significant
variations by proposing changes to the architecture, and by design-
ing an approach with contrastive pre-training, as it is known to be
useful for classification of brain signals [15], and proposing a spa-
tial loss function for this contrastive pre-training. This model has
the advantage that we can considerer both ictal (during seizures) and
inter-ictal signals, and that we can train it on a heterogeneous group
of patient.

2. ELEMENTS OF THE MODEL

2.1. Time-frequency features

The sEEG signals at each electrode are processed by a Daubechies-
4 (Db4) Wavelet Packet Transform (WPT) [16]. We use 5 levels of
decomposition and this provides localized time-frequency features,
useful for detecting spikes, ripples, and HFOs [11, 12].

The compact support of the Db4 wavelet allows sharp tempo-
ral resolution for transient spikes (i.e, sudden high-amplitude dis-
charges), while its regularity suppresses smoother background activ-
ity [12]. This granularity disentangles overlapping spectral compo-
nents, allowing DL models to identify ripples as sustained energy in
specific sub-bands, and spikes as transient bursts in adjacent bands.

2.2. Model Architecture

Denoting dfeatures, the length of flattened WPT features and C the
number of channels for a given patient, time-frequency features
[f1,f2, . . . ,fC ] ∈ Rdfeatures×C are first projected through a lin-
ear layer into a token space of fixed dimension dmodel, yielding the
sequence [t1, t2, . . . , tC ] ∈ Rdmodel×C . This sequence serves as
the input to a transformer encoder [13], which produces learned
representations [h1,h2, . . . ,hC ] ∈ Rdmodel×C , see Fig. 1. These
representations are employed, along with the SOZ labels, in the
proposed spatial contrastive pre-training task.

In contrast to [14] which adds a [CLS] token to aggregate token-
level information, before processing it with an MLP for SOZ prob-
ability estimation, we deliberately omit the [CLS] token and rely
on spatial contrastive pretraining to ensure that the learned repre-
sentation of each channel is inherently informative with respect to
the SOZ. Finally, to obtain channel-wise probability estimates, we
project the encoder outputs through a linear layer and apply a sig-
moid activation, producing scores between 0 and 1.
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Fig. 1. Model architecture

Fig. 2. Similarity distribution of a patient after 25 epochs of training

2.3. Contrastive pre-training

The core of our methodology is a spatial contrastive loss, which dif-
ferentiates between latent representations based on their spatial ori-
gins. Minimizing the loss will minimize the similarity for channel
pairs where one signal is in the SOZ, and the other is not, and con-
versely maximizes the similarity for channel pairs that both originate
from the SOZ. The proposed loss reads as follows:

L =
1

N1

∑
(i,j)∈J1,CK2

i 6=j
gi=gj=1

max(0,m+ − simij) +
1

N2

∑
(i,j)∈J1,CK2

i 6=j
gi 6=gj

max(0, simij −m−)

where,

gi is 1 if channel i ∈ SOZ, 0 otherwise
m+ . 1 is the positive margin
m− & −1 is the negative margin

simij =
hi

>hj

‖hi‖‖hj‖
is the cosine similarity between hi and hj

N1 = #{(i, j)|gi = gj = 1}
N2 = #{(i, j)|gi 6= gj}.

3. NUMERICAL EXPERIMENTS

3.1. Dataset & Training

The model is trained on the HUP iEEG epilepsy dataset [17], us-
ing SOZ labels for ictal and interictal recordings. A custom dataset

Fig. 3. Attention map seen as a directed graph. This is the first head
of the first layer of our pre-trained model on a one minute clip. The
center graph shows the upper triangle of the attention matrix, while
the rightmost graph shows the lower triangle. Attention flows from
queries (line indices) to keys (column indices).

class was implemented in PyTorch [18] to handle multiple patient
recordings, output labels, channel names, and patient IDs. This class
enables global indexing of all recordings and metadata, providing a
unified interface that facilitates training across the entire dataset.

We use one-minute sEEG clips resampled at 500Hz (the HUP
dataset recordings are sampled at 500Hz, 512Hz, or 1024Hz), re-
sulting in 30,000 time samples per clip, which reduce to 29,920 after
applying a level-5 Wavelet Packet Transform. The transformer en-
coder consists of 6 layers, each with 8 attention heads and a model
dimension of dmodel = 512, with 30% dropout applied after each
multi-head attention and feedforward block. Training is performed
over 100 epochs with a batch size of 16, using Adam with a linear
warmup cosine annealing learning rate scheduler that ramps from
10−6 to 2.10−5 over 10 epochs and then decays back to 10−6. The
model is trained on an Nvidia Titan RTX using the ENSL server
resources at CBP operated by SIDUS[19].

Fig. 2 shows an example of the distributions of cosine similar-
ities of representations for a patient (in the training set) after pre-
training. The success of the contrastive training can be seen in the
differences between the distributions, according to the position of
the contacts w.r.t. the SOZ.

3.2. Supervised fine-tuning

After pre-training, we keep the weights from the first linear layer and
the transformer encoder, then we introduce an additional linear layer
to project the learned representations to a single value per channel.
Sigmoid activation is applied to produce SOZ scores ranging from 0
to 1. To fine-tune the model, we employ a binary cross-entropy loss.
While our primary focus has been on pre-training, the fine-tuning
stage is still in progress.

3.3. Attention maps seen as directed connectivity graphs

Functional connectivity networks have been widely used by neurol-
ogists to understand dependencies between brain regions[2, 3, 4, 8].
Here, we interpret attention maps from the transformer-based model
as directed connectivity graphs, drawing a parallel to usual repre-
sentations in neuroscience. Specifically, the attention maps A =

softmax
(

QK>√
dK

)
of the multi-head attention blocks are viewed as

digraphs for each input clip. Given that each input produces multiple
such graphs –spanning layers and attention heads– we explore their
structure and significance. As an example, we visualize in Fig. 3
the first attention map from the initial layer for a randomly selected
clip, highlighting how the model inherently produces graph-like rep-
resentations. This perspective strengthens the connection between
transformer-based models and established methods in brain signal
analysis. In future work, the relation between them and the TF fea-
tures, as signals on these graphs, will be studied.
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